openPMD-api Documentation
Release 0.13.0

The openPMD Community

Jan 04, 2021

CONTENTS

1 Supported openPMD Standard Versions 3
1.1 CodeofConduct o o e e e e e e 3
1.1.1 OurPledge e 3

1.1.2 OurStandards 3

1.1.3 Our Responsibilities e e e 4

L4 Scope . . . o o e e e e e e 4

1.1.5 Enforcement e e e 4

1.1.6 Attribution L. e e e e e e e e e 4

1.2 CRtationo o vt e e e e e 4
1.2.1 openPMD-standard e e e 4

.22 openPMD-api e e e e 5

2 Installation 7
2.1 Installation L e e e e e 7
2.1.1 Usingthe Spack Package e 7

2.1.2 Usingthe CondaPackage 7

2.1.3 Usingthe Brew Package 7

2.14 Usingthe PyPI Package 8

2.1.5 From Source withCMake 8

2.2 Changelog e e e e e e e e 9
22,1 0.13.0 . o e 9

222 0.12.0-alpha e e 12

223 0.01.d-alpha 13

224 0.11.0-alpha e 14

225 0.103-alpha e 15

22.6 0.10.2-alpha e e 16

227 0.10.d-alphao e 16

22.8 0.10.0-alpha e 17

229 09.0-alpha e 18
2210 0.8.0-alpha e e e 20
22,11 0.7.1-alpha e e e 21
22,12 0.7.0-alpha e 21
2213 0.63-alpha e e 22
22,14 0.6.2-alpha 23
2.2.15 0.6.1-alpha e e e e e e e 23
22.16 0.6.0-alpha e 23
2217 0.5.0-alpha e e 24
2218 04.0-alpha 25
22,19 03.1-alpha e e e 26
2220 03.0-alpha e e e 27
2221 02.0-alpha e e e 28
2222 0.1.1-alpha e e e 28
2223 0.1.0-alphao e e e e 29

23 Upgrade Guide L e e 29

231 0.13.0 .« o 29

232 0.12.0-alpha e e e 30

233 0.11.0-alpha e e 30

234 0.10.0-alpha e 31

235 09.0-alpha e 31

23.6 0.7.0-alpha e e 31

3 Usage 35
3.1 First Write L e e 35
3.1.1 Include/Import o v o e e e e e e e e e e e e e 35

3120 0pen ..o e e e e e e e e 35

3.1.3 0 Tteration h e 36

3,14 Attributes e e e e e e e e e e e 36

3.5 Data e e e e e e e e e e 37

3.1.6 Record. e e e e e 37

307 0 UNItS . o o e e e e e e e e e e e e e e e e e e 38

3.1.8 Register Chunk e e e e e 39

3.1.9 FlushChunk. e e e e e 39
3010 Close . . v v v e e e e e e e e e e e e e 40

32 FirstRead. e 40
32,1 Include/Import ot e e e e e e e e e e e e e e 40

322 OpeN ..o e e e e e e e e e 41

323 Teration v i e 41

324 Attributes L. L e e e e e e e e e 41

325 Record. e 42

326 UNItS . . . o ot e e e e e e e e e e e 42

327 Register Chunk e e e e e e 43

32.8 FlushChunk. e e 44

329 Data e e e e e e e e e e e e e e e e e e 44
32,10 CIOSE . . . v o i e e e e 45

3.3 Serial Examples e e e 45
33.1 Reading L e e e e e e 45

332 WIIINg . . . v o e e e e e e e e e e e e 48

3.4 Parallel Examples e 50
341 Reading 50

342 WIIting o L e e e e 52

3.5 Streaming e e e e e e e e e e e e e 55
351 Reading L e e e e e 55

352 WIIting o o e e e e e e e 58

3.6 Benchmarks e e e e 60
3.6.1 Parallelbenchmarks 8a & 8bo 60

3.6.2 Benchmark Utilities e 62

3.7 AILEXamples o o o e e e e e e e e e e e e e e 62
370 CHt oo e e e e e 62

372 Python. e e e e e 62

3773 UnitTests o . o o e e e e e e e e e e e e 63

4 API Details 65
A1 G o o e e e 65
4.1.1 PublicHeaders e 65

4.1.2 External Documentation e e e e 65

42 Python e e e e e e e e e e 65
42.1 PublicHeaders 65

43 MPIL . . e e e e e 66
43.1 Collective Behavior e e e 66

4.3.2 Efficient Parallel /O Patterns 66

4.4 Backend-Specific Configuration e e e e e e 67
4.4.1 Configuration Structure per Backendo oL, 67

5 [Utilities

5.1 Command Line Tools e
51,1 openpmd—15 . . . i e
5.2 Benchmark e e
5.2.1 Example Usage e e e e
6 Backends
6.1 OVEIVIEW o o it e e e e e e e e e e e
6.1.1 Selected References e e e
6.2 JSON . . . e
6.2.1 JSONFileFormat. e
6.2.2 ReStriCtions e e e e e e
6.23 Example e
6.3 ADIOSL . . . e
6.3.1 T/OMethod e
6.3.2 Backend-Specific Controls e e e
6.3.3 BestPracticeat Large Scale e
6.3.4 LImitations o it e e e e e e e e e e e e e e e e e e e
6.3.5 Selected References e
6.4 ADIOS2 e
6.4.1 T/OMethod e e
60.4.2 StEPS . . e e e e e e e e e e e e
6.4.3 Backend-Specific Controls e
6.4.4 BestPracticeat Large Scale o
6.4.5 Selected References e e e e
6.5 HDFS . . .
6.5.1 T/OMethod e
6.5.2 Backend-Specific Controls e
6.5.3 Selected References e
7 Development
7.1 Contribution Guide e e e e e e e e
711 GitHub e
7.1.2 StyleGuide L e
7.2 Repository Structure o v v it i e e e e e e e
7.2.1 Branches
7.2.2 Directory SIHUCIUTE . . . v v v v o o vt e e e e e e e e e e e e e e e e
7.3 Design OVerviewo e e e e e e e
73.1 Backend e e
732 T/O-Queue e e e e e e e e
733 Frontend. e
74 HowtoWriteaBackend L e
7.4.1 FileFormats o o . e e e e e e e
7.4.2 IOHandler e e e e
743 IO TaskQueue e e e e e
7.5 Build Dependencies i e e e e e e e e e e e e e e e e
7.5.1 Required L e e e e e e e e e
7.5.2 Shippedinternally L e
7.5.3 Optional: I/Obackends
7.5.4 Optional: language bindings
7.5.5 Quick Install with Spack
7.6 BuilldOptions. o ot e e e e e e e e e e e e e e e
7.6.1 Variants e e e e e e e e
7.6.2 SharedorStatic L e e e e e
7.63 Debug e e e
7.6.4 Shipped Dependencies e
7.6.5 Tests, Examples and Command Line Tools
TT SPhinX . . o o e e e e e e e e e e e

69
69
69
69
70

73
73
73
73
74
74
75
77
77
77
78
78
79
79
79
79
80
80
80
81
81
81
82

83
83
&3
83
83
83
83
84
85
85
86
87
87
88
89
91
92
92
92
92
92
93
93
93
93
94
94
94

7.77.1 BuildLocally e e e e e e 94

7.7.2 Useful Links e e e e e 95

8 Maintenance 97
8.1 Release Channels e e e e e e 97
8.1.1 Spack e e e e e 97

8.1.2 Conda-Forge e e e e 97

8.1.3 Brew. e e e e 97

8.1.4 PyPL 97

8.1.5 ReadTheDocs e e e e e 98

8.1.6 DOXYZEN . . . v e e e e e e e e e e e e e 98

openPMD-api Documentation, Release 0.13.0

openPMD is an open meta-data schema that provides meaning and self-description for data sets in science and
engineering. See the openPMD standard for details of this schema.

This library provides a reference API for openPMD data handling. Since openPMD is a schema (or markup)
on top of portable, hierarchical file formats, this library implements various backends such as HDF5, ADIOSI,
ADIOS2 and JSON. Writing & reading through those backends and their associated files is supported for serial
and MPI-parallel workflows.

CONTENTS 1

https://github.com/openPMD/openPMD-standard
https://www.mpi-forum.org/docs/

openPMD-api Documentation, Release 0.13.0

2 CONTENTS

CHAPTER
ONE

SUPPORTED OPENPMD STANDARD VERSIONS

openPMD-api is a library using semantic versioning for its public API. Please see this link for ABI-compatibility.
The version number of openPMD-api is not related to the version of the openPMD standard.

The supported version of the openPMD standard are reflected as follows: standardMAJOR.apiMAJOR.
apiMINOR.

openPMD-api version supported openPMD standard versions
2.0.0+ 2.0.0+ (not released yet)

1.0.0+ 1.0.1-1.1.0 (not released yet)
0.13.0 (beta) 1.0.0-1.1.0
0.1.0-0.12.0(alpha) | 1.0.0-1.1.0

1.1 Code of Conduct

1.1.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to mak-
ing participation in our project and our community a harassment-free experience for everyone, regardless of age,
body size, disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education,
socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

1.1.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:
» Using welcoming and inclusive language
* Being respectful of differing viewpoints and experiences
* Gracefully accepting constructive criticism
» Focusing on what is best for the community
» Showing empathy towards other community members
Examples of unacceptable behavior by participants include:
* The use of sexualized language or imagery and unwelcome sexual attention or advances
* Trolling, insulting/derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others’ private information, such as a physical or electronic address, without explicit permission

* Other conduct which could reasonably be considered inappropriate in a professional setting

https://semver.org/
https://abi-laboratory.pro/?view=timeline&l=openpmd-api
https://github.com/openPMD/openPMD-standard
https://github.com/openPMD/openPMD-standard

openPMD-api Documentation, Release 0.13.0

1.1.3 Our Responsibilities
Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take
appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki
edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or perma-
nently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

1.1.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing
the project or its community. Examples of representing a project or community include using an official project
e-mail address, posting via an official social media account, or acting as an appointed representative at an online
or offline event. Representation of a project may be further defined and clarified by project maintainers.

1.1.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team
at openpmd @plasma.ninja. All complaints will be reviewed and investigated and will result in a response that is
deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality
with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or
permanent repercussions as determined by other members of the project’s leadership.

1.1.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq

1.2 Citation

openPMD (Open Standard for Particle-Mesh Data Files) is a community project with many people contributing to
it. If you use openPMD and/or openPMD related software in your work, please credit it when publishing and/or
presenting work performed with it in order to give back to the community.

1.2.1 openPMD-standard

The central definition of openPMD is the meta data schema defined in openPMD/openPMD-standard. The most
general reference to openPMD is:

Tip: Axel Huebl, Remi Lehe, Jean-Luc Vay, David P. Grote, Ivo F. Sbalzarini, Stephan Kuschel, David Sagan,
Christopher Mayes, Frederic Perez, Fabian Koller, and Michael Bussmann. “openPMD: A meta data standard for
particle and mesh based data,” DOI:10.5281/zenodo0.591699 (2015)

Since the openPMD-standard is an actively evolving meta data schema, a specific version of the openPMD stan-
dard might be used in your work. You can select a version-specific DOI from the release page and add the version
number to the cited title, e.g.

4 Chapter 1. Supported openPMD Standard Versions

mailto:openpmd@plasma.ninja
https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/faq
https://github.com/openPMD/openPMD-standard
https://doi.org/10.5281/zenodo.591699
https://github.com/openPMD/openPMD-standard/releases

openPMD-api Documentation, Release 0.13.0

Note: [author list as above] ... “openPMD 1.1.0: A meta data standard for particle and mesh based data,”
DOI:10.5281/zenodo.1167843 (2018)

1.2.2 openPMD-api

openPMD-api is a software library that provides a reference implementation of the openPMD-standard for pop-
ular data formats. It targets both desktop as well as high-performance computing environments.

It is good scientific practice to document all used software, including transient dependencies, with versions in, e.g.
a methods section of a publication. As a software citation, you almost always want to refer to a specific version of
openPMD-api in your work, as illustrated for version 0.10.3:

Tip: Fabian Koller, Franz Poeschel, Junmin Gu, and Axel Huebl. “openPMD-api 0.10.3: C++ & Python API
for Scientific I/O with openPMD,” DOI:10.14278/rodare.209 (2019)

A list of all releases and DOIs can be found on the release page.

We also provide a DOI that refers to all releases of openPMD-api:

Note: [author list as above] ... “openPMD-api: C++ & Python API for Scientific I/O with openPMD”
DOI:10.14278/rodare.27 (2018)

Dependent Software

The good way to control complex software environments is to install software through a package manager (see
installation). Furthermore, openPMD-api provides functionality to simplify the documentation of its version and
enabled backends:

C++14

#include <openPMD/openPMD.hpp>
#include <iostream>

namespace io = openPMD;

V2R
std::cout << "openPMD-api: "

<< io::getVersion() << std::endl;
std::cout << "openPMD-standard: "

<< io::getStandard() << std::endl;

std::cout << "openPMD-api backend variants: " << std::endl;
for(auto const & v : io::getVariants())
std::cout << " " << v.first << ": "

<< v.second << std::endl;

1.2. Citation 5

https://doi.org/10.5281/zenodo.1167843
https://doi.org/10.14278/rodare.209
https://github.com/openPMD/openPMD-api/releases
https://doi.org/10.14278/rodare.27

openPMD-api Documentation, Release 0.13.0

Python

import openpmd api as io

print ("openPMD-api: {}"
.format (io.___version_))

print ("openPMD-api backend variants: {}"
.format (io.variants))

6 Chapter 1. Supported openPMD Standard Versions

CHAPTER
TWO

INSTALLATION

2.1 Installation

Our community loves to help each other. Please report installation problems in case you should get stuck.

Choose one of the installation methods below to get started:

2.1.1 Using the Spack Package

A package for openPMD-api is available via the Spack package manager.

optional: +python +adiosl —-adios2 —hdf5 -mpi
spack install openpmd-api
spack load -r openpmd-api

2.1.2 Using the Conda Package

A package for openPMD-api is available via the Conda package manager.

optional: OpenMPI support =#=mpi_openmpi *
optional: MPICH support =x=mpi_mpichx*
conda create -n openpmd -c conda-forge openpmd-api

conda activate openpmd

2.1.3 Using the Brew Package

A package for openPMD-api is available via the Homebrew/Linuxbrew package manager.

brew tap openpmd/openpmd
brew install openpmd-api

Brew ship only the latest release, includes (Open)MPI support and lacks the ADIOS1 backend.

https://github.com/openPMD/openPMD-api/issues/new?labels=install&template=install_problem.md
https://spack.io
https://conda.io
https://brew.sh/
https://docs.brew.sh/Homebrew-on-Linux

openPMD-api Documentation, Release 0.13.0

2.1.4 Using the PyPI Package

A package for openPMD-api is available via the Python Package Index (PyPI).

On very old macOS versions (<10.9) or on exotic processor architectures, this install method compiles from source
against the found installations of HDF5, ADIOS1, ADIOS2, and/or MPI (in system paths, from other package
managers, or loaded via a module system, ...).

we need pip 19 or newer
optional: --user
python3 -m pip install -U pip

optional: --user
python3 -m pip install openpmd-api

If MPI-support shall be enabled, we always have to recompile:

optional: -—user
python3 -m pip install -U pip setuptools wheel
python3 -m pip install -U cmake

optional: -
—user
openPMD_USE_MPI=ON python3 -m pip install openpmd-api --no-binary openpmd-api

2.1.5 From Source with CMake

You can also install openPMD—api from source with CMake. This requires that you have all dependencies
installed on your system. The developer section on build options provides further details on variants of the build.

Linux & OSX

git clone https://github.com/openPMD/openPMD-api.git

mkdir openPMD-api-build
cd openPMD-api-build

optional: for full tests
../openPMD-api/share/openPMD/download_samples.sh

for own install prefix append:
—-DCMAKE_INSTALI_PREFIX=SHOME/somepath

for options append:
—-DopenPMD_USE_...=...

e.g. for python support add:
—DopenPMD_USE_PYTHON=ON

cmake ../openPMD-api

HH FH R H R H

cmake —--build

optional
ctest

sudo might be required for system paths
cmake —--build . —--target install

8 Chapter 2. Installation

https://pypi.org
https://cmake.org/

openPMD-api Documentation, Release 0.13.0

Windows

The process is basically similar to Linux & OSX, with just a couple of minor tweaks. Use ps ..\
openPMD-api\share\openPMD\download_samples.psl todownload sample files for tests (optional).
Replace the last three commands with

cmake —--build . --config Release

optional
ctest -C Release

administrative privileges might be required for system paths
cmake —--build . —--config Release —-target install

Post “From Source” Install
If you installed to a non-system path on Linux or OSX, you need to express where your newly installed library
can be found.

Adjust the lines below accordingly, e.g. replace SHOME/somepath with your install location prefix in
-DCMAKE_INSTALL_PREFIX=. ... CMake will summarize the install paths for you before the build step.

install prefix | ————————— /

export CMAKE_PREFIX_ PATH=$HOME/somepath:$CMAKE_PREFIX_PATH

export LD_LIBRARY_PATH=S$HOME/somepath/lib:S$LD_LIBRARY_PATH

Note that one some systems, /lib might need to be replaced with /1ib64.

change path to your python MAJOR.MINOR version
export PYTHONPATH=S$HOME/somepath/lib/python3.8/site-packages:$SPYTHONPATH

Adding those lines to your $HOME / . bashrc and re-opening your terminal will set them permanently.

Set hints on Windows with the CMake printed paths accordingly, e.g.:

set CMAKE_PREFIX_PATH=C:\\Program Files\openPMD; $CMAKE_PREFIX_PATH%
set PATH=C:\\Program Files\openPMD\Lib; $PATHS
set PYTHONPATH=C:\\Program Files\openPMD\Lib\site-packages; $PYTHONPATHS%

2.2 Changelog

2.2.1 0.13.0

Date: 2021-01-03
Streaming Support, Python, Benchmarks

This release adds first support for streaming I/O via ADIOS2’s SST engine. More I/O benchmarks have been added
with realistic application load patterns. Many Python properties for openPMD attributes have been modernized,
with slight breaking changes in Iteration and Mesh data order. This release requires C++14 and adds support for
Python 3.9. With this release, we leave the “alpha” phase of the software and declare “beta” status.

2.2. Changelog 9

openPMD-api Documentation, Release 0.13.0

Changes to “0.12.0-alpha”

Features

* ADIOS2: streaming support (via ADIOS SST) #570
* add : :availableChunks call to record component types #802 #835 #847
e HDFS5: control alignment via OPENPMD_HDF5_ALIGNMENT #830
* JSON configuration on the dataset level #818
* Python
— attributes as properties in Series, Mesh, Iteration,... #859
— add missing python interface (read/write) for machine #796
— add Record_Component .make_empty () #538
* added tests 8a & 8b to do 1D/2D mesh writing and reading #803 #816 #834
» PyPI: support for Windows wheels on x86-64 #853

Bug Fixes

¢ fix Series attributes: read defaults #812

* allow reading a file-based series with many iterations without crashing the number of file handles #822 #837

* Python: Fix & replace Data_Order semantics #850
* ADIOSI:
— add missing CLOSE_FILE IO task to parallel backend #785
* ADIOS2:
— fix engine destruction order, anticipating release 2.7.0 #838
* HDF5:
— support alternate form of empty records (FBPIC) #849
e Intel ICC (icpc):
— fix export #788
— fix segfaultin ITteration #789
* fix & support ClangCL on Windows #832
* CMake:
— Warnings: ICC & root project only #791
— Warnings: FindADIOS(1).cmake 2.8.12+ #841

— Warnings: less verbose on Windows #851

10

. Installation

openPMD-api Documentation, Release 0.13.0

Other

* switched to “beta” status: dropping the version —suffix
* switch to C++14 #825 #826 #836
* CMake:
— require version 3.15.0+ #857
— re-order dependency checks #3810
* Python: support 3.6 - 3.9 #828
* NLohmann-JSON dependency updated to 3.9.1+ #839
e pybind11 dependency updated 2.6.1+ #857
* ADIOS2:

— less verbose about missing boolean helper attributes #801

— turn off statistics (Min/Max) #831
» HDFS5: better status checks & error messages #795

¢ Docs:

release cibuildwheel example #775
— Iteration::close () is MPI-collective #779
— overview compression ADIOS2 #781
— add comment on 1ib64/ #793
— typo in description for ADIOS1 #797
— conda: recommend fresh environment #799
— Sphinx/rst: fix warnings #809
— first read: slice example #819
* CIL:
— Travis -> GH Action #823 #827
— remove Cygwin #820
— sanitize only project (temporarily disabled) #800
— update LGTM environment #3844
— clang-tidy updates #843

set oldest supported macOS #854

* Tests:
— add HiPACE parallel I/O pattern #842 #848
— cover FBPIC empty HDF5 #849

* Internal: add Optional based on variantSrc: :variant #3806

2.2. Changelog

11

openPMD-api Documentation, Release 0.13.0

2.2.2 0.12.0-alpha

Date: 2020-09-07

Complex Numbers, Close & Backend Options

This release adds data type support for complex numbers, allows to close iterations and adds first support for
backend configuration options (via JSON), which are currently implemented for ADIOS2. Further installation
options have been added (homebrew and CLI tool support with pip). New free standing functions and macro
defines are provided for version checks.

Changes to “0.11.1-alpha”

Features

Record (Component): scalar (), constant (), empty () #711
Advanced backend configuration via JSON #569 #733
Support for complex floating point types #639
Functionality to close an iteration (and associated files) #746
Python:
— __init__ .py facade #720

add Mesh_Record_Component .position read-write property #713

— add openpmd-1s tool in pip installs and as module #721 #724

more idiomatic unit properties #735

add file_extensions property #768
CD:
— homebrew: add Formula (OSX/Linux) #724 #725
— PyPI: autodeploy wheels (OSX/Linux) #716 #719
version compare macro #747
getFileExtensions function #768
Spack environment file spack.yaml added to repo #737

openpmd-1s: add -v, —--version option #771

Bug Fixes

flush () exceptions in ~Series/~..IOHandler do not abort anymore #709
Iteration/Attributable assignment operator left object in invalid state #769
Datatype.hpp: add missing include #764
readme: python example syntax was broken and outdated #722
examples:

— fix "weighting" record attribute (ED-PIC) #728

- fix & validate all created test/example files #738 #739
warnings:

— listSeries: unused params in try-catch #707

— fix Doxygen 1.18.8 and 1.18.20 warnings #766

12

Chapter 2.

Installation

openPMD-api Documentation, Release 0.13.0

Other

extended write example: remove MSVC warning #752

* CMake: require version 3.12.0+ #755

ADIOS2: require version 2.6.0+ #754

* separate header for export macros #704

e rename AccessType/Access_Type to Access #740 #743 #744
e CI & tests:

migration to travis-ci.com / GitHub app #703
migrate to GitHub checkout action v2 #712
fix OSX numpy install #714

move .travis/ to .github/ci/ #715
move example file download scripts to share/openPMD/ #715
add GCC 9.3 builds #723

add Cygwin builds #727

add Clang 10.0 builds #759

migrate Spack to use AppleClang #758

style check scripts: eval-uable #757

new Spack external package syntax #760

python tests: testAttributes JSON backend coverage #767

e listSeries: remove unused parameters in try-catch #706

* safer internal ~dynamic_cast of pointers #745

* CMake: subproject inclusion cleanup #751

* Python: remove redundant move in container #753

* read example: show particle load #706

* Record component: fix formatting #763

e add

.editorconfig file #762

¢ MPI benchmark: doxygen params #653

2.2.3 0.11.1-alpha

Date: 2020-03-24
HDF5-1.12, Azimuthal Examples & Tagfile

This release adds support for the latest HDF5 release. Also, we add versioned Doxygen and a tagfile for external
docs to our online manual.

2.2. Changelog

13

openPMD-api Documentation, Release 0.13.0

Changes to “0.11.0-alpha”

Features

* HDFS5: Support 1.12 release #696

* Doxygen: per-version index in Sphinx pages #697

Other

* Examples:
— document azimuthal decomposition read/write #678
— better example namespace alias (i0) #698

* Docs: update API detail pages #699

2.2.4 0.11.0-alpha

Date: 2020-03-05
Robust Independent I/O

This release improves MPI-parallel I/O with HDF5 and ADIOS. ADIOS2 is now the default backend for handing
. bp files.

Changes to “0.10.3-alpha”

Features

ADIOS2:
— new default for . bp files (over ADIOS1) #676
— expose engine #656
e HDF5: OPENPMD_HDF5_INDEPENDENT=ON is now default in parallel I/O #677
¢ defaults for date and software base attributes #657
* Series::setSoftware () add second argument for version #657
* free standing functions to query the API version and feature variants at runtime #665
e expose determineFormat and suffix functions #684

¢ CLI: add openpmd—-1s tool #574

Bug Fixes

* std::ostream& operator<< overloads are not declared in namespace std anymore #662
* ADIOSI:

— ensure creation of files that only contain attributes #674

— deprecated in favor of ADIOS2 backend #676

— allow non-collective storeChunk () calls with multiple iterations #679

* Pip: work-around setuptools/CMake bootstrap issues on some systems #689

14 Chapter 2. Installation

openPMD-api Documentation, Release 0.13.0

Other

e deprecated Series::setSoftwareVersion: set the version with the second argument of

setSoftware () #657
* ADIOS2: require version 2.5.0+ #656
* nvcc:
— warning missing erase overload of Container child classes #648
— warning on unreachable code #659
— MPark.Variant: update C++14 hotfix #618 to upstream version #650

e docs:

typo in Python example for first read #649

remove all Doxygen warnings and add to CI #654

backend feature matrix #661

document CMake’s Fet chContent feature for developers #667
more notes on HDF5 & ADIOS1 #685

» migrate static checks for python code to GitHub actions #660
¢ add MPICH tests to CI #670

e Attribute constructor: move argument into place #663

* Spack: ADIOS2 backend now enabled by default #664 #676
* add independent HDF5 write test to CI #669

¢ add test of multiple active Series #686

2.2.5 0.10.3-alpha

Date: 2019-12-22
Improved HDF5 Handling

More robust HDFS5 file handling and fixes of local includes for more isolated builds.

Changes to “0.10.2-alpha”

Bug Fixes

* Source files: fix includes #640
» HDFS5: gracefully handle already open files #643

2.2. Changelog

15

openPMD-api Documentation, Release 0.13.0

Other

* Better handling of legacy libSplash HDFS files #641

e new contributors #644

2.2.6 0.10.2-alpha

Date: 2019-12-17
Improved Error Messages

Thrown errors are now prefixed by the backend in use and ADIOS| series reads are more robust.

Changes to “0.10.1-alpha”

Bug Fixes

* Implement assignment operators for: I0Task, Mesh, Iteration, BaseRecord, Record #628

e Missing virtual destructors added #632

Other

* Backends: Prefix Error Messages #634
* ADIOSI1: Skip Invalid Scalar Particle Records #635

2.2.7 0.10.1-alpha

Date: 2019-12-06
ADIOS2 Open Speed and NVCC Fixes

This releases improves the initial time spend when parsing data series with the ADIOS2 backend. Compile prob-
lems when using the CUDA NVCC compiler in downstream projects have been fixed. We adopted a Code of
Conduct in openPMD.

Changes to “0.10.0-alpha”

Features

¢ C++: add Container: :contains method #622

Bug Fixes

* ADIOS2:

— fix C++17 build #614

— improve initial open speed of series #613
* nvce:

— ignore export of enum class Operation #0617

— fix C++14 build #618

16 Chapter 2. Installation

openPMD-api Documentation, Release 0.13.0

Other

e community:
— code of conduct added #619
— all contributors listed in README #621

* manylinux2010 build automation updated for Python 3.8 #615

2.2.8 0.10.0-alpha

Date: 2019-11-14
ADIOS?2 Preview, Python & MPI Improved

This release adds a first (preview) implementation of ADIOS2 (BP4). Python 3.8 support as well as improved pip
builds on macOS and Windows have been added. ADIOS1 and HDF5 now support non-collective (independent)
store and load operations with MPI. More HPC compilers, such as IBM XL, ICC and PGI have been tested. The
manual has been improved with more details on APIs, examples, installation and backends.

Changes to “0.9.0-alpha”

Features

ADIOS2: support added (v2.4.0+) #482 #513 #530 #568 #572 #573 #588 #605

* HDF5: add OPENPMD_HDF5_INDEPENDENT for non-collective parallel I/O #576
* Python:

— Python 3.8 support #581

— support empty datasets via Record_Component .make_empty #538

* pkg-config: add static variable (t rue/false) to openPMD. pc package #580

Bug Fixes

* Clang: fix pybind11 compile on older releases, such as AppleClang 7.3-9.0, Clang 3.9 #543
* Python:
— OSX: fix dlopen issues due to missing @loader_path with pip/setup.py #595

Windows: fix a missing DLL issue by building static with pip/setup.py #602
import mpi4py first (MPICH on OSX issue) #596

skip examples using HDFS if backend is missing #544

fix a variable shadowing in Mesh #582

add missing .unit_dimension for records #611

ADIOSI: fix deadlock in MPI-parallel, non-collective calls to storeChunk () #554
* xIC 16.1: work-around C-array initializer parsing issue #547

* icc 19.0.0 and PGI 19.5: fix compiler ID identification #548

CMake: fix false-positives in FindADIOS . cmake module #609

* Series: throws an error message if no file ending is specified #610

2.2. Changelog 17

openPMD-api Documentation, Release 0.13.0

Other

» Python: improve pip install instructions #594 #600

PGI 19.5: fix warning static constexpr: storage class first #546
JSON:

— the backend is now always enabled #564 #587

— NLohmann-JSON dependency updated to 3.7.0+ #556

* gitignore: generalize CLion, more build dirs #549 #552

* fix clang-tidy warnings: st rcmp and modernize aut o, const correctness #551 #560
* ParallelIOTest: less code duplication #553

* Sphinx manual:

PDF Chapters #557

draft for the API architecture design #186

draft for MPI data and collective contract in API usage #583

fix tables & missing examples #579

“first write” explains unitDimension #592

link to datasets used in examples #598

fix minor formatting and include problems #608
« README:
— add authors and acknowledgements #566
— correct a typo #584
— use $ (which python3) for CMake Python option #599
— update ADIOS homepage & CMake #604
e Travis CI:
— speedup dependency build #558
— —Werror only in build phase #565

2.2.9 0.9.0-alpha

Date: 2019-07-25
Improved Builds and Packages

This release improves PyPI releases with proper declaration of build dependencies (use pip 19.0+). For
Makefile-based projects, an openPMD.pc file to be used with pkg-config is added on install.
RecordComponent now supports a makeEmpty method to write a zero-extent, yet multi-dimensional record
component. We are now building as shared library by default.

18 Chapter 2. Installation

openPMD-api Documentation, Release 0.13.0

Changes to “0.8.0-alpha”

Features

e C++: support empty datasets via RecordComponent : :makeEmpty #528 #529

* CMake:

— build a shared library by default #506

— generate pkg—config .pc file #532 #535 #537
* Python:

— manylinux2010 wheels for PyPI #523

— add pyproject.toml for build dependencies (PEP-518) #527

Bug Fixes

e MPark. Variant: work-around missing version bump #504
* linker error concerning Mesh: : set TimeOf fset method template #511
» remove dummy dataset writing from RecordComponent : : flush () #528

* remove dummy dataset writing from Pat chRecordComponent : : f1lush #512

¢ allow flushing before defining position and positionOffset components of particle species #518

#519
* CMake:
— make install paths cacheable on Windows #521
— HDFS linkage is private #533
e warnings:
— unused variable in JSON backend #507
— MSVC: Warning DLL Interface STDlib #508

Other

* increase pybind11 dependency to 2.3.0+ #525
* GitHub:
— auto-add labels #515
— issue template for install issues #526
— update badges #522
* docs:
— link parallel python examples in manual #499
— improved Doxygen parsing for all backends #500
— fix typos #517

2.2. Changelog

19

openPMD-api Documentation, Release 0.13.0

2.2.10 0.8.0-alpha

Date: 2019-03-09
Python mpidpy and Slice Support

We implemented MPI support for the Python frontend via mpidpy and added []-slice access to
Record_Component loads and stores. A bug requiring write permissions for read-only series was fixed and
memory provided by users is now properly checked for being contiguous. Introductory chapters in the manual
have been greatly extended.

Changes to “0.7.1-alpha”
Features

* Python:
— mpidpy support added #454

— slice protocol for record component #458

Bug Fixes

* do not require write permissions to open Series read-only #395

loadChunk: re-enable range/extent checks for adjusted ranges #469
* Python: stricter contiguous check for user-provided arrays #458

* CMake tests as root: apply OpenMPI flag only if present #456

Other

* increase pybind11 dependency to 2.2.4+ #455
 Python: remove (inofficial) bindings for 2.7 #435
* CMake 3.12+: apply policy CMP0074 for <Package>_ROOT vars #391 #464
* CMake: Optional ADIOS1 Wrapper Libs #472
* MPark.Variant: updated to 1.4.0+ #465
 Catch2: updated to 2.6.1+ #466
¢ NLohmann-JSON: updated to 3.5.0+ #467
* Docs:

— PyPl install method #450 #451 #497

— more info on MPI #449

— new “first steps” section #473 #478

— update invasive test info #474

— more info on Access #483

— improved MPI-parallel write example #496

20 Chapter 2. Installation

openPMD-api Documentation, Release 0.13.0

2.2.11 0.7.1-alpha

Date: 2018-01-23
Bug Fixes in Multi-Platform Builds

This release fixes several issues on OSX, during cross-compile and with modern compilers.

Changes to “0.7.0-alpha”

Bug Fixes

* fix compilation with C++17 for python bindings #438
* FindADIOS.cmake: Cross-Compile Support #436
* ADIOSI1: fix runtime crash with libc++ (e.g. OSX) #442

Other

* CI: clang libc++ coverage #441 #444

* Docs:
— additional release workflows for maintainers #439
— ADIOSI1 backend options in manual #440
— updated Spack variants #445

2.2.12 0.7.0-alpha

Date: 2019-01-11
JSON Support, Interface Simplification and Stability

This release introduces serial JSON (. json) support. Our API has been unified with slight breaking changes
such as a new Python module name (import openpmd_api from now on) as well as re-ordered store/
loadChunk argument orders. Please see our new “upgrade guide” section in the manual how to update existing
scripts. Additionally, many little bugs have been fixed. Official Python 3.7 support and a parallel benchmark

example have been added.

Changes to “0.6.3-alpha”

Features

o C++:
— storeChunk argument order changed, defaults added #386 #416
— loadChunk argument order changed, defaults added #408

* Python:

import openPMD renamed to import openpmd_api #380 #392
— store_chunk argument order changed, defaults added #386

— load_chunk defaults added #408

works with Python 3.7 #376

setup.py for sdist #240

2.2. Changelog

21

openPMD-api Documentation, Release 0.13.0

* Backends: JSON support added #384 #393 #338 #429
* Parallel benchmark added #346 #398 #402 #411

Bug Fixes

* spurious MPI C++11 API usage in ParallellOTest removed #396

* spurious symbol issues on OSX #427

e new []/delete mismatch in ParallellOTest #422

* use-after-free in SeriallOTest #409

 fix ODR issue in ADIOS1 backend corrupting the Abstract IOHandler vtable #415
* fix race condition in MPI-parallel directory creation #419

* ADIOSI: fix use-after-free in parallel I/O method options #421

Other

* modernize I0Task’s AbstractParameter for slice safety #410
* Docs: upgrade guide added #385
* Docs: python particle writing example #430
* CI: GCC 8.1.0 & Python 3.7.0 #376
¢ CI: (re-)activate Clang-Tidy #423
e IOTask: init all parameters’ members #420
* KDevelop project files to . gitignore #424
e C++:
— Mesh’s setAxisLabels|GridSpacing|GridGlobalOffset passed as const & #425
* CMake:
— treat third party libraries properly as IMPORTED #389 #403
— Catch2: separate implementation and tests #399 #400

— enable check for more warnings #401

2.2.13 0.6.3-alpha

Date: 2018-11-12
Reading Varying Iteration Padding Reading

Support reading series with varying iteration padding (or no padding at all) as currently used in PIConGPU.

22 Chapter 2. Installation

openPMD-api Documentation, Release 0.13.0

Changes to “0.6.2-alpha”

Bug Fixes

* support reading series with varying or no iteration padding in filename #388

2.2.14 0.6.2-alpha

Date: 2018-09-25
Python Stride: Regression
A regression in the last fix for python strides made the relaxation not efficient for 2-D and higher.

Changes to “0.6.1-alpha”

Bug Fixes

 Python: relax strides further

2.2.15 0.6.1-alpha

Date: 2018-09-24
Relaxed Python Stride Checks

Python stride checks have been relaxed and one-element n-d arrays are allowed for scalars.

Changes to “0.6.0-alpha”

Bug Fixes

* Python:
— stride check too strict #369

— allow one-element n-d arrays for scalars in store, make_constant #314

Other

 dependency change: Catch2 2.3.0+

 Python: add extended write example #314

2.2.16 0.6.0-alpha

Date: 2018-09-20
Particle Patches Improved, Constant Scalars and Python Containers Fixed

Scalar records properly support const-ness. The Particle Patch load interface was changed, loading now all patches
at once, and Python bindings are available. Numpy dtype is now a first-class citizen for Python Datatype
control, being accepted and returned instead of enums. Python lifetime in garbage collection for containers such
asmeshes, particles and iterations is now properly implemented.

2.2. Changelog 23

openPMD-api Documentation, Release 0.13.0

Changes to “0.5.0-alpha”

Features

* Python:

accept & return numpy . dtype for Datatype #351

better check for (unsupported) numpy array strides #353

implement Record_Component .make_constant #354

implement Particle_Patches #362
» comply with runtime constraints w.r.t. written status #352

¢ Joad at once ParticlePatches.load () #364

Bug Fixes

* dataOrder: mesh attribute is a string #355
* constant scalar Mesh Records: reading corrected #358

* particle patches: stricter load (idx) range check #363, then removed in #364

Python: lifetime of ITteration.meshes/particles and Series.iterations members #354

Other

* test cases for mixed constant/non-constant Records #358

» examples: close handles explicitly #359 #360

2.2.17 0.5.0-alpha

Date: 2018-09-17
Refactored Type System

The type system for Datatype:: s was refactored. Integer types are now
represented by °SHORT, INT, LONG and LONGLONG as fundamental C/C++ types. Python sup-
port enters “alpha” stage with fixed floating point storage and At t ribute handling.

Changes to “0.4.0-alpha”
Features

* Removed Datatype: : INT32 types with : : SHORT, : : INT equivalents #337

e Attribute::get<...>() performs a static_cast now #345

24 Chapter 2. Installation

openPMD-api Documentation, Release 0.13.0

Bug Fixes

* Refactor type system and Attribute set/get
— integers #337
— support Llong double reads on MSVC #184
* setAttribute: explicit C-string handling #341
* Dataset: setCompression warning and error logic #326
* avoid impact on unrelated classes in invasive tests #324

e Python

single precision support: numpy . f1oat is an alias for builtins.float #318 #320

Dataset method namings to underscores #319

container namespace ambiguity #343

set_attribute: broken numpy, list and string support #330

Other

* CMake: invasive tests not enabled by default #323

* store_chunk: more detailed type mismatch error #322

* no_such_file_error &no_such_attribute_error: remove c-string constructor #325 #327
* add virtual destructor to Attributable #332

e Python: Numpy 1.15+ required #330

2.2.18 0.4.0-alpha

Date: 2018-08-27
Improved output handling

Refactored and hardened for £ileBased output. Records are not flushed before the ambiguity between scalar
and vector records are resolved. Trying to write globally zero-extent records will throw gracefully instead of
leading to undefined behavior in backends.

Changes to “0.3.1-alpha”
Features

* do not assume record structure prematurely #297

* throw in (global) zero-extent dataset creation and write #309

2.2. Changelog 25

openPMD-api Documentation, Release 0.13.0

Bug Fixes

e ADIOS1 fileBased IO #297
¢ ADIOS?2 stub header #302
e name sanitization in ADIOS1 and HDF5 backends #310

Other

e CI updates: #291
— measure C++ unit test coverage with coveralls
— clang-format support
— clang-tidy support
— include-what-you-use support #291 export headers #300
— OSX High Sierra support #301
— individual cache per build # 303
— readable build names #308
» remove superfluous whitespaces #292
* readme: openPMD is for scientific data #294
e override implies virtual #293
* spack load: —r #298
¢ default constructors and destructors #304
* string pass-by-value #305

e test cases with 0-sized reads & writes #135

2.2.19 0.3.1-alpha

Date: 2018-07-07
Refined fileBased Series & Python Data Load

A specification for iteration padding in filenames for £ileBased series is introduced. Padding present in read
iterations is detected and conserved in processing. Python builds have been simplified and python data loads now
work for both meshes and particles.

Changes to “0.3.0-alpha”

Features

* CMake:

— add openPMD: : openPMD alias for full-source inclusion #277

— include internally shipped pybind11 v2.2.3 #281

— ADIOSI1: enable serial API usage even if MPI is present #252 #254
* introduce detection and specification $0\d+T of iteration padding #270
 Python:

— add unit tests #249

26 Chapter 2. Installation

openPMD-api Documentation, Release 0.13.0

— expose record components for particles #284

Bug Fixes

 improved handling of fileBased Series and READ_WRITE access
* expose Container constructor as protected rather than public #282
* Python:

— return actual data in 1oad_chunk #286

Other

* docs:
— improve “Install from source” section #274 #285

— Spack python 3 install command #278

2.2.20 0.3.0-alpha

Date: 2018-06-18
Python Attributes, Better FS Handling and Runtime Checks

This release exposes openPMD attributes to Python. A new independent mechanism for verifying internal condi-
tions is now in place. Filesystem support is now more robust on varying directory separators.

Changes to “0.2.0-alpha”

Features

CMake: add new openPMD_USE_VERIFY option #229
* introduce VERIFY macro for pre-/post-conditions that replaces ASSERT #229 #260
* serial Singularity container #236
* Python:
— expose attributes #256 #266
— use lists for offsets & extents #266
e C++:

— setAttribute signature changed to const ref #268

Bug Fixes

¢ handle directory separators platform-dependent #229
* recursive directory creation with existing base #261
* FindADIOS.cmake: reset on multiple calls #263

* SerialIOTest: remove variable shadowing #262

ADIOS1: memory violation in string attribute writes #269

2.2. Changelog 27

openPMD-api Documentation, Release 0.13.0

Other

* enforce platform-specific directory separators on user input #229
* docs:
— link updates to https #259
— minimum MPI version #251
— title updated #235
* remove MPI from serial ADIOS interface #258
* better name for scalar record in examples #257
* check validity of internally used pointers #247
* various CI updates #246 #250 #261

2.2.21 0.2.0-alpha

Date: 2018-06-11
Initial Numpy Bindings

Adds first bindings for record component reading and writing. Fixes some minor CMake issues.

Changes to “0.1.1-alpha”

Features

 Python: first NumPy bindings for record component chunk store/load #219
¢ CMake: add new BUILD_EXAMPLES option #238
e CMake: build directories controllable #241

Bug Fixes

* forgot to bump version.hpp/__version__ in last release

¢ CMake: Overwritable Install Paths #237

2.2.22 0.1.1-alpha

Date: 2018-06-07
ADIOS1 Build Fixes & Less Flushes

We fixed build issues with the ADIOS1 backend. The number of performed flushes in backends was generally
minimized.

28 Chapter 2. Installation

openPMD-api Documentation, Release 0.13.0

Changes to “0.1.0-alpha”

Bug Fixes

* SeriallOTest: 1oadChunk template missing for ADIOS1 #227

* prepare running serial applications linked against parallel ADIOSI library #228

Other

¢ minimize number of flushes in backend #212

2.2.23 0.1.0-alpha

Date: 2018-06-06
This is the first developer release of openPMD-api.

Both HDF5 and ADIOS!1 are implemented as backends with serial and parallel I/O support. The C++11 API is
considered alpha state with few changes expected to come. We also ship an unstable preview of the Python3 API.

2.3 Upgrade Guide

2.3.1 0.13.0

Building openPMD-api now requires a compiler that supports C++14 or newer. Supported Python version are
now 3.6 to 3.9. CMake 3.15.0 is now the minimally supported version for CMake.

Python

Reading the data_order of a mesh was broken. The old setter function (set_data_order) and read-only
property (data_order) are now unified in a single, writable property:

import openpmd_api as io
series = io.Series("data%T.h5", io.Access.read_only)
rho = series.iterations[0] .meshes["rho"]

rho.data_order = 'C' # or 'F'

print (rho.data_order == 'C'") # True

Note: we recommend using 'C' order since version 2 of the openPMD-standard will simplify this option to
'C', too. For Fortran-ordered indices, please just invert the attributes axis_labels, grid_spacing and
grid_global_offset accordingly.

The Iteration functions time, dt and time_unit_ST have been replaced with read-write properties of
the same name, essentially without the ()-access. set_time, set_dt and set_time_unit_SI are now
deprecated and will be removed in future versions of the library.

The already existing read-only Series properties openPMD, openPMD_extension, base_path,
meshes_path, particles_path, particles_path, author, date, iteration_encoding,
iteration_format and name are now declared as read-write properties. set_openPMD,
set_openPMD_extension, set_base_path, set_meshes_path, set_particles_path,
set_author, set_date, set_iteration_encoding, set_iteration_format and set_name
are now deprecated and will be removed in future versions of the library.

2.3. Upgrade Guide 29

openPMD-api Documentation, Release 0.13.0

The already existing read-only Mesh properties geometry, geometry_parameters, axis_labels,
grid_spacing, grid_global_offset and grid_unit_SI are now declared as read-write prop-
erties. set_geometry, set_geometry_parameters, set_axis_labels, set_grid_spacing,
set_grid_global_offset and set_grid_unit_ST are now deprecated and will be removed in future
versions of the library.

The already existing read-only Attributable property comment is now declared as read-write properties.
set_comment is now deprecated and will be removed in future versions of the library.

2.3.2 0.12.0-alpha

CMake 3.12.0 is now the minimally supported version for CMake. ADIOS 2.6.0 is now the minimally supported
version for ADIOS?2 support.

Python

The already existing read-only properties unit_dimension,unit_ST, and time_offset are now declared
as read-write properties. set_unit_dimension, set_unit_STI, and set_time_offset are now depre-
cated and will be removed in future versions of the library.

Access_Type is now called Access. Using it by the old name is deprecated and will be removed in future
versions of the library.

C++

AccessType is now called Access. Using it by the old name is deprecated and will be removed in future
versions of the library.

2.3.3 0.11.0-alpha

ADIOS2 is now the default backend for .bp files. As soon as the ADIOS2 backend is enabled it will take
precedence over a potentially also enabled ADIOS1 backend. In order to prefer the legacy ADIOS1 backend
in such a situation, set an environment variable: export OPENPMD_BP_BACKEND="ADIOS1". Support for
ADIOSI is now deprecated.

Independent MPI-1/O is now the default in parallel HDFS5. For the old default, collective parallel I/O, set the
environment variable export OPENPMD_HDF5_INDEPENDENT="OFF". Collective parallel /O makes more
functionality, such as st oreChunk and 1oadChunk, MPI-collective. HDFS5 attribute writes are MPI-collective
in either case, due to HDFS5 restrictions.

Our Spack packages build the ADIOS?2 backend now by default. Pass —~adios2 to the Spack spec to disable it:
spack install openpmd-api —-adios?2 (same for spack load -r).

The Series::setSoftwareVersion method is now deprecated and will be removed in future versions of
the library. Use Series::setSoftware (name, version) instead. Similarly for the Python API, use
Series.set_software instead of Series.set_software_version.

The automated example-download scripts have been moved from .travis/download_samples.sh (and
.psl)to share/openPMD/.

30 Chapter 2. Installation

https://spack.io

openPMD-api Documentation, Release 0.13.0

2.3.4 0.10.0-alpha

We added preliminary support for ADIOS?2 in this release. As long as also the ADIOS1 backend is enabled it
will take precedence for . bp files over the newer ADIOS2 backend. In order to enforce using the new ADIOS2
backend in such a situation, set an environment variable: export OPENPMD_BP_BACKEND="ADIOS2". We
will change this default in upcoming releases to prefer ADIOS2.

The JSON backend is now always enabled. The CMake option ~-DopenPMD_USE_JSON has been removed (as
it is always ON now).

Previously, omitting a file ending in the Series constructor chose a “dummy”” no-operation file backend. This
was confusing and instead a runtime error is now thrown.

2.3.5 0.9.0-alpha

We are now building a shared library by default. In order to keep build the old default, a static library, append
-DBUILD_SHARED_LIBS=OFF tothe cmake command.

2.3.6 0.7.0-alpha
Python

Module Name

Our module name has changed to be consistent with other openPMD projects:

old name
import openPMD

new name
import openpmd_ api

store_chunk Method

The order of arguments in the store_ chunk method for record components has changed. The new order allows
to make use of defaults in many cases in order reduce complexity.

particlePos_x = np.random.rand(234) .astype(np.float32)

d = Dataset (particlePos_x.dtype, extent=particlePos_x.shape)

electrons["position"] ["x"] .reset_dataset (d)
old code
electrons["position"] ["x"].store_chunk ([0,], particlePos_x.shape, particlePos_x)

new code

electrons["position"] ["x"].store_chunk (particlePos_x)

implied defaults:

.store_chunk (particlePos_x,

offset=[0,],

extent=particlePos_x.shape)

2.3. Upgrade Guide 31

openPMD-api Documentation, Release 0.13.0

load_ chunk Method

The 1oadChunk<T> method with on-the-fly allocation has default arguments for offset and extent now. Called
without arguments, it will read the whole record component.

E_x = series.iterations[100] .meshes["E"] ["x"]

old code
all_data = E_x.load_chunk (np.zeros (E_x.shape), E_x.shape)

new code
all_data = E_x.load_chunk ()

series.flush()

C++

storeChunk Method

The order of arguments in the st oreChunk method for record components has changed. The new order allows
to make use of defaults in many cases in order reduce complexity.

std::vector< float > particlePos_x (234, 1.234);

Datatype datatype = determineDatatype (shareRaw (particlePos_x));

Extent extent = {particlePos_x.size()};
Dataset d = Dataset (datatype, extent);
electrons["position"] ["x"].resetDataset (d);

// old code
electrons["position"] ["x"].storeChunk ({0}, extent, shareRaw(particlePos_x));

// new code

electrons["position"] ["x"].storeChunk (particlePos_x);
/* implied defaults:
* .storeChunk (shareRaw (particlePos_x),
* {0},
* {particlePos_x.size()}) */

loadChunk Method

The order of arguments in the pre-allocated data overload of the 1 cadChunk method for record components has
changed. The new order allows was introduced for consistency with storeChunk.

float loadOnePos;

// old code
electrons["position"] ["x"].loadChunk ({0}, {1}, shareRaw(&loadOnePos));

// new code
electrons["position"] ["x"].loadChunk (shareRaw (&loadOnePos), {0}, {1});

series.flush();

The loadChunk<T> method with on-the-fly allocation got default arguments for offset and extent. Called
without arguments, it will read the whole record component.

32 Chapter 2. Installation

openPMD-api Documentation, Release 0.13.0

MeshRecordComponent E_x = series.iterations[100].meshes["E"]["x"

// old code
auto all_data

E_x.loadChunk<double> ({0, 0, 0}, E_x.getExtent());

// new code
auto all_data = E_x.loadChunk<double> () ;

series.flush();

2.3. Upgrade Guide 33

openPMD-api Documentation, Release 0.13.0

34 Chapter 2. Installation

CHAPTER
THREE

3.1 First Write

Step-by-step: how to write scientific data with openPMD-api?

3.1.1 Include / Import

After successful installation, you can start using openPMD-api as follows:

C++14

USAGE

#include <openPMD/openPMD.hpp>
// example: data handling
#include <numeric> // std::iota

#include <vector> // std::vector

namespace io = openPMD;

Python

import openpmd api as io

example: data handling
import numpy as np

3.1.2 Open

Write into a new openPMD series in myOutput /data_<00. . .N>.hb5. Further file formats than . h5 (HDF5)

are supported: .bp (ADIOS1/ADIOS2) or . json (JSON).

35

https://hdfgroup.org
https://www.olcf.ornl.gov/center-projects/adios/
https://csmd.ornl.gov/software/adios2
https://en.wikipedia.org/wiki/JSON#Example

openPMD-api Documentation, Release 0.13.0

C++14

auto series = io0::Series|(
"myOutput/data_%05T.h5",
io::Access: :CREATE) ;

Python

series = io.Series|(
"myOutput/data_%05T.h5",
io.Access.create)

3.1.3 lteration

Grouping by an arbitrary, positive integer number <N> in a series:

C++14

’auto i series.iterations[42];
Python

’i = series.iterations[42]

3.1.4 Attributes

Everything in openPMD can be extended and user-annotated. Let us try this by writing some meta data:

C++14

series.setAuthor (

"Axel Huebl <axelhuebl@lbl.gov>");
series.setMachine (

"Hall Probe 5000, Model 3");
series.setAttribute (

"dinner", "Pizza and Coke");
i.setAttribute(

"vacuum", true);

Python
series.author = \

"Axel Huebl <axelhuebl@lbl.gov>"
series.machine = "Hall Probe 5000, Model 3"

series.set_attribute (

"dinner", "Pizza and Coke")
i.set_attribute (

"vacuum", True)

36 Chapter 3. Usage

openPMD-api Documentation, Release 0.13.0

3.1.5 Data

Let’s prepare some data that we want to write. For example, a magnetic field slice B (4, 7) in two spatial dimensions
with three components (B, B, B,)T of which the B, component shall be constant for all (4, j) indices.

C++14

std: :vector<float> x_data/(
150 = 300);

std::iota(
x_data.begin(),
x_data.end(),
0.);

float y_data = 4.f;
std: :vector<float> z_data (x_data);

for(autos& ¢ : z_data)
c —-= 8000.f;

Python

x_data = np.arange (
150 ~ 300,
dtype=np.float

) .reshape (150, 300)

y_data = 4.

z_data = x_data.copy () — 8000.

3.1.6 Record

An openPMD record can be either structured (mesh) or unstructured (particles). We prepared a vector field in 2D
above, which is a mesh:

C++14

// record
auto B = i.meshes["B"];

// record components
auto B_x B["x"];
auto B_y = B["y"];
auto B_z = B["z"];

auto dataset = io::Dataset (
io::determineDatatype<£float> (),
{150, 300});

B_x.resetDataset (dataset) ;

B_y.resetDataset (dataset);

B_z.resetDataset (dataset) ;

3.1. First Write 37

openPMD-api Documentation, Release 0.13.0

Python

record
B = i.meshes["B"]

record components
B.x = B["x"
B_y = B["yll]
B_z = B["z"]

dataset = io.Dataset (
x_data.dtype,
x_data.shape)
B_x.reset_dataset (dataset)
B_y.reset_dataset (dataset)
B_z.reset_dataset (dataset)

3.1.7 Units

Let’s describe this magnetic field B in more detail. Independent of the absolute unit system, a magnetic field has
the physical dimension of [mass (M)! - electric current (I)"' - time (T)2].

Ouch, our magnetic field was measured in cgs units! Quick, let’s also store the conversion factor 10 from Gauss
(cgs) to Tesla (SI).

C++14

// unit system agnostic dimension

B.setUnitDimension ({
{io::UnitDimension: :M, 13,
{io::UnitDimension::I, -1},
{io0::UnitDimension::T, -2}

)i

// conversion to SI

B_x.setUnitSI(1l.e-4);
B_y.setUnitSI(l.e-4);
B_z.setUnitSI(l.e-4);

Python

unit system agnostic dimension

B.unit_dimension = {
io.Unit_Dimension.M: 1,
io.Unit_Dimension.I: -1,
io.Unit_Dimension.T: -2

conversion to SI
B_x.unit_SI = 1.
B_y.unit_SI = 1.
B_z.unit_SI = 1.

® O O
|
B

Tip: Annotating the physical dimension (unitDimension) of arecord allows us to read data sets with arbitrary
names and understand their purpose simply by dimensional analysis. The dimensional base quantities in openPMD
are length (L), mass (M), time (T), electric current (I), thermodynamic temperature (theta), amount of substance

38 Chapter 3. Usage

https://en.wikipedia.org/wiki/Dimensional_analysis
https://en.wikipedia.org/wiki/Gaussian_units
https://en.wikipedia.org/wiki/Gauss_(unit)
https://en.wikipedia.org/wiki/Tesla_(unit)
https://en.wikipedia.org/wiki/Dimensional_analysis
https://en.wikipedia.org/wiki/International_System_of_Quantities#Base_quantities

openPMD-api Documentation, Release 0.13.0

(N), luminous intensity (J) after the international system of quantities (ISQ). The factor to SI (unitS1I) on the
other hand allows us to convert values between absolute unit systems.

3.1.8 Register Chunk

We can write record components partially and in parallel or at once. Writing very small data one by one is is a
performance killer for I/O. Therefore, we register all data to be written first and then flush it out collectively.

C++14

B_x.storeChunk (
io: :shareRaw (x_data),
{0, 0}, {150, 300});
B_z.storeChunk (
io: :shareRaw (z_data),
{0, 0}, {150, 300});

B_y.makeConstant (y_data) ;

Python

B_x.store_chunk (x_data)

B_z.store_chunk (z_data)

B_y.make_constant (y_data)

Attention: After registering a data chunk such as x_data and y_data, it MUST NOT be modified or
deleted until the f1ush () step is performed!

3.1.9 Flush Chunk

We now flush the registered data chunks to the I/O backend. Flushing several chunks at once allows to increase
I/O performance significantly. After that, the variables x_data and y_data can be used again.

C++14

series.flush();

3.1. First Write 39

openPMD-api Documentation, Release 0.13.0

Python

series.flush ()

3.1.10 Close

Finally, the Series is fully closed (and newly registered data or attributes since the last . f1ush () is written)
when its destructor is called.

C++14

// destruct series object,
// e.g. when out—-of-scope

Python

’del series

3.2 First Read

Step-by-step: how to read openPMD data? We are using the examples files from openPMD-example-datasets
(example-3d.tar.gz).

3.2.1 Include / Import

After successful installation, you can start using openPMD-api as follows:

C++11

#include <openPMD/openPMD.hpp>

// example: data handling & print
#include <vector> // std::vector
include <iostream> // std::cout
#include <memory> // std::shared _ptr

namespace io = openPMD;

Python

import openpmd api as io

example: data handling
import numpy as np

40 Chapter 3. Usage

https://github.com/openPMD/openPMD-example-datasets

openPMD-api Documentation, Release 0.13.0

3.2.2 Open

Open an existing openPMD series in data<N>.h5. Further file formats than . h5 (HDF5) are supported: .bp
(ADIOS1/ADIOS2) or . json (JSON).

C++11

auto series = io::Series(
"data%T.h5",
io::Access: :READ_ONLY) ;

Python

series = io.Series(
"data%T.h5",
io.Access.read_only)

3.2.3 lteration

Grouping by an arbitrary, positive integer number <N> in a series. Let’s take the iteration 100:

C++11

’auto i = series.iterations[100];
Python

1 = series.iterations[100]

3.2.4 Attributes

openPMD defines a kernel of meta attributes and can always be extended with more. Let’s see what we’ve got:

C++11

std::cout << "openPMD version: "
<< series.openPMD () << "\n";

if(series.containsAttribute ("author"))
std::cout << "Author: "
<< series.author () << "\n";

3.2. First Read VL]

https://hdfgroup.org
https://www.olcf.ornl.gov/center-projects/adios/
https://csmd.ornl.gov/software/adios2
https://en.wikipedia.org/wiki/JSON#Example

openPMD-api Documentation, Release 0.13.0

Python

print ("openPMD version: ",
series.openPMD)

if series.contains_attribute ("author") :
print ("Author: ",
series.author)

3.2.5 Record

An openPMD record can be either structured (mesh) or unstructured (particles). Let’s read an electric field:

C++11

// record
auto E = i.meshes["E"];

// record components
auto E_x = E["x"];

Python

record
E = 1i.meshes["E"]

record components
E.x = E["x"]

Tip: You can check via 1 .meshes.contains ("E") (C++) or "E" in i.meshes (Python) if an entry
exists.

3.2.6 Units

Even without understanding the name “E” we can check the dimensionality of a record to understand its purpose.

C++11

// unit system agnostic dimension
auto E_unitDim = E.unitDimension();

/7

// 1o::UnitDimension::M

// conversion to SI
double x_unit = E_x.unitSI();

42 Chapter 3. Usage

https://www.openpmd.org/openPMD-api/classopen_p_m_d_1_1_container.html
https://en.wikipedia.org/wiki/Dimensional_analysis

openPMD-api Documentation, Release 0.13.0

Python

unit system agnostic dimension
E_unitDim = E.unit_dimension

#

io.Unit_Dimension.M

conversion to SI
x_unit = E_x.unit_SI

Note: This example is not yet written :-)

In the future, units are automatically converted to a selected unit system (not yet implemented). For now, please
multiply your read data (x_data) with x_unit to covert to SI, otherwise the raw, potentially awkwardly scaled
data is taken.

3.2.7 Register Chunk

We can load record components partially and in parallel or at once. Reading small data one by one is is a perfor-
mance killer for I/O. Therefore, we register all data to be loaded first and then flush it in collectively.

C++11

// alternatively, pass pre-allocated
std: :shared_ptr< double > x_data =
E_x.loadChunk< double > ();

Python

returns an allocated but
invalid numpy array
x_data = E_x.load_chunk ()

Attention: After registering a data chunk such as x_data for loading, it MUST NOT be modified or deleted
until the £1ush () step is performed! You must not yet access x_data !

One can also request to load a slice of data:

C++11

Extent extent = E_x.getExtent();
extent.at (2) = 1;
std: :shared_ptr< double > x_slice_data =
E_x.loadChunk< double > (
io::0ffset {0, 0, 4}, extent);

3.2. First Read 43

openPMD-api Documentation, Release 0.13.0

Python

we support slice syntax, too
x_slice_data = E_x[:, :, 4]

Don’t forget that we still need to £1ush ().

3.2.8 Flush Chunk

We now flush the registered data chunks and fill them with actual data from the I/O backend. Flushing several
chunks at once allows to increase I/O performance significantly. Only after that, the variables x_data and
x_slice_data can be read, manipulated and/or deleted.

C++11

series.flush(); ‘

Python

series.flush () ‘

3.2.9 Data

We can now work with the newly loaded data in x_data (or x_slice_data):

C++11

auto extent = E_x.getExtent ();

std::cout << "First values in E_x "
"of shape: ";
for (auto const&¢ dim : extent)
std::cout << dim << ", ";
std::cout << "\n";

for(size_t col = 0;
col < extent[1l] && col < 5;
++col)
std::cout << x_data.get () [col]
<< "M,
std::cout << "\n";

Python

extent = E_x.shape

print (
"First values in E_x "
"of shape: ",
extent)

print (x_datal[0, 0, :5]1)

44 Chapter 3. Usage

openPMD-api Documentation, Release 0.13.0

3.2.10 Close

Finally, the Series is closed when its destructor is called. Make sure to have f1ush () ed all data loads at this
point, otherwise it will be called once more implicitly.

C++11

// destruct series object,
// e.g. when out-of-scope

Python

’del series

3.3 Serial Examples

The serial API provides sequential, one-process read and write access. Most users will use this for exploration
and processing of their data.

3.3.1 Reading

C++

#include <openPMD/openPMD.hpp>

#include <iostream>
#include <memory>
#include <cstddef>

using std::cout;
using namespace openPMD;

int main ()
{
Series series = Series(
"../samples/git-sample/data%T.h5",
Access: :READ_ONLY
)

cout << "Read a Series with openPMD standard version "

<< series.openPMD () << '\n';
cout << "The Series contains " << series.iterations.size() << " iterations:";
for (auto const& 1 : series.iterations)

cout << "\n\t" << i.first;
cout << '\n';

Iteration i = series.iterations[100];
cout << "Iteration 100 contains " << i.meshes.size() << " meshes:";
for (auto const& m : i.meshes)

cout << "\n\t" << m.first;
cout << '\n';
cout << "Iteration 100 contains " << i.particles.size() << " particle species:

(continues on next page)

3.3. Serial Examples 45

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

for(auto consté& ps : i.particles) {
cout << "\n\t" << ps.first;
for (auto consté r : ps.second) {

cout << "\n\t" << r.first;
cout << '"\n';

openPMD: :ParticleSpecies electrons = i.particles["electrons"];
std::shared_ptr<double> charge = electrons|["charge

—"] [openPMD: :RecordComponent : : SCALAR] .loadChunk<double> () ;
series.flush();
cout << "And the first electron particle has a charge = " << charge.get () [0];
cout << '"\n';

MeshRecordComponent E_x = i.meshes["E"]["x"];
Extent extent = E_x.getExtent ();
cout << "Field E/x has shape (";

for(auto consts& dim : extent)
cout << dim << ', ';
cout << ") and has datatype " << E_x.getDatatype() << '\n';

Offset chunk_offset = {1, 1, 1};
Extent chunk_extent = {2, 2, 1};
auto chunk_data = E_x.loadChunk<double> (chunk_offset, chunk_extent);
cout << "Queued the loading of a single chunk from disk, "
"ready to execute\n";

series.flush{();
cout << "Chunk has been read from disk\n"

<< "Read chunk contains:\n";
for(size_t row = 0; row < chunk_extent[0]; ++row)

{

for(size_t col = 0; col < chunk_extent[1]; ++col)
cout << "\t"
<< ' (' << row + chunk_offset[0] << '"|' << col + chunk_offset[1l] <
o< T << D << M)\E"

<< chunk_data.get () [rowxchunk_extent[1]+col];
cout << '\n';

auto all_data = E_x.loadChunk<double> () ;

series.flush();

cout << "Full E/x starts with:\n\t{";

for(size_t col = 0; col < extent[l] && col < 5; ++col)
cout << all_data.get () [col] << ", ";

cout << "...}\n";

/* The files in 'series' are still open until the object is destroyed, on
* which it cleanly flushes and closes all open file handles.
* When running out of scope on return, the 'Series' destructor is called.
*/

return 0;

An extended example can be found in examples/6_dump_filebased_series.cpp.

46 Chapter 3. Usage

openPMD-api Documentation, Release 0.13.0

Python

import openpmd_api as io

if _ name_ == "_ _main__ ":
series = io.Series("../samples/git-sample/data%$T.h5",
io.Access.read_only)
print ("Read a Series with openPMD standard version %s" %
series.openPMD)

print ("The Series contains {0} iterations:".format (len(series.iterations)))
for i in series.iterations:
print ("\t {0}".format (i))

print (n ll)
i = series.iterations[100]
print ("Iteration 100 contains {0} meshes:".format (len(i.meshes)))

for m in i.meshes:
print ("\t {0}".format (m))
print ("")
print ("Iteration 100 contains {0} particle species:".format (
len(i.particles)))
for ps in i.particles:
print ("\t {0}".format (ps))
print ("With records:")
for r in i.particles([ps]:
print ("\t {0}".format (r))

printing a scalar value

electrons = i.particles["electrons"]

charge = electrons["charge"][io.Mesh_Record_Component.SCALAR]

series.flush ()

print ("And the first electron particle has a charge {}"
.format (charge[0]))

print ("")

E_x = i.meshes["E"]["x"]
shape = E_x.shape

print ("Field E.x has shape {0} and datatype {1}".format (
shape, E_x.dtype))

chunk_data = E_x[1:3, 1:3, 1:2]
print ("Queued the loading of a single chunk from disk, "
"ready to execute")
series.flush ()
print ("Chunk has been read from disk\n"
"Read chunk contains:")
print (chunk_data)
for row in range(2):
for col in range (2):
print ("\t ({0} [{1}[{2})\t{3}".format (
row + 1, col + 1, 1, chunk data[rowxchunk extent[1]+col])
)
print("")

¥ W W%

all_data = E_x.load_chunk ()

series.flush ()

print ("Full E/x is of shape {0} and starts with:".format (all_data.shape))
print (all_datalO, 0, :51)

(continues on next page)

3.3. Serial Examples 47

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

The files in 'series' are still open until the object is destroyed, on
which it cleanly flushes and closes all open file handles.
One can delete the object explicitly (or let it run out of scope) to

oW W W

trigger this.
del series

3.3.2 Writing

C++

#include <openPMD/openPMD.hpp>

#include <iostream>
#include <memory>
#include <numeric>
#include <cstdlib>

using std::cout;
using namespace openPMD;

int main (int argc, char xargvl[])

{

// user input: size of matrix to write, default 3x3
size_t size = (argc == 2 ? atoi(argv([l]) : 3);

// matrix dataset to write with values 0...size*size-1
std::vector<double> global_data(sizexsize);
std::iota(global_data.begin(), global_data.end(), 0.);

cout << "Set up a 2D square array (" << size << 'x' << size
<< ") that will be written\n";

// open file for writing

Series series = Series(
"../samples/3_write_serial.h5",
Access: :CREATE

)i

cout << "Created an empty " << series.iterationEncoding() << " Series\n";

MeshRecordComponent rho =
series
.lterations[1]
.meshes["rho"] [MeshRecordComponent : : SCALAR];
cout << "Created a scalar mesh Record with all required openPMD attributes\n";

Datatype datatype = determineDatatype (shareRaw(global_data));

Extent extent = {size, size};

Dataset dataset = Dataset (datatype, extent);

cout << "Created a Dataset of size " << dataset.extent[0] << 'x' << dataset.

—extent [1]

<< " and Datatype " << dataset.dtype << '\n';

rho.resetDataset (dataset) ;
cout << "Set the dataset properties for the scalar field rho in iteration 1\n";

series.flush();
cout << "File structure and required attributes have been written\n";

(continues on next page)

48

Chapter 3. Usage

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

Offset offset = {0, 0};

rho.storeChunk (shareRaw (global_data), offset, extent);

cout << "Stored the whole Dataset contents as a single chunk,
"ready to write content\n";

n

series.flush{();
cout << "Dataset content has been fully written\n";

/+ The files in 'series' are still open until the object is destroyed, on
* which it cleanly flushes and closes all open file handles.
* When running out of scope on return, the 'Series' destructor is called.
*/

return 0O;

An extended example can be found in examples/7_extended_write_serial.cpp.

Python

import openpmd_api as io
import numpy as np

if _ name_ == "_ _main_ ":
user input: size of matrix to write, default 3x3
size = 3
matrix dataset to write with values 0...sizexsize-1

data = np.arange(sizexsize, dtype=np.double) .reshape (3, 3)

print ("Set up a 2D square array ({0}x{1l}) that will be written".format (
size, size))

open file for writing
series = io.Series(
"../samples/3_write_serial_py.h5",
io.Access.create
print ("Created an empty {0} Series".format (series.iteration_encoding))
print (len(series.iterations))
rho = series.iterations([1]. \
meshes["rho"] [i0o.Mesh_Record_Component.SCALAR]

dataset = io.Dataset (data.dtype, data.shape)

print ("Created a Dataset of size {0}x{1l} and Datatype {2}".format (
dataset.extent [0], dataset.extent[l], dataset.dtype))

rho.reset_dataset (dataset)
print ("Set the dataset properties for the scalar field rho in iteration 1")

series.flush ()
print ("File structure has been written")

rho[()] = data

print ("Stored the whole Dataset contents as a single chunk, " +
"ready to write content")

(continues on next page)

3.3. Serial Examples 49

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

series.flush ()
print ("Dataset content has been fully written")

The files in 'series' are still open until the object is destroyed, on
which it cleanly flushes and closes all open file handles.

One can delete the object explicitly (or let it run out of scope) to

trigger this.

del series

3.4 Parallel Examples

The following examples show parallel reading and writing of domain-decomposed data with MPI.

The Message Passing Interface (MPI) is an open communication standard for scientific computing. MPI is used
on clusters, e.g. large-scale supercomputers, to communicate between nodes and provides parallel I/O primitives.

3.4.1 Reading

C++

#include <openPMD/openPMD.hpp>
#include <mpi.h>

#include <iostream>
#include <memory>
#include <cstddef>

using std::cout;
using namespace openPMD;

int main(int argc, char xargv[])
{
MPI_Init (&argc, &argv);

int mpi_size;
int mpi_rank;

MPI_Comm_size (MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank (MPI_COMM_WORLD, &mpi_rank);

/* note: this scope 1is intentional to destruct the openPMD::Series object
* prior to MPI_Finalize();
*/

{

Series series Series (
"../samples/git-sample/data%T.h5",
Access: :READ_ONLY,
MPI_COMM_WORLD
)i
if(0 == mpi_rank)
cout << "Read a series in parallel with " << mpi_size << " MPI ranks\n

(continues on next page)

50 Chapter 3. Usage

https://www.mpi-forum.org/

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

MeshRecordComponent E_x = series.iterations[100].meshes["E"]["x"];

Offset chunk_offset = {
static_cast< long unsigned int > (mpi_rank) + 1,
1/
1

}i

Extent chunk_extent = {2, 2, 1};

auto chunk_data = E_x.loadChunk<double> (chunk_offset, chunk_extent);

if(0 == mpi_rank)
cout << "Queued the loading of a single chunk per MPI rank from disk, "
"ready to execute\n";
series.flush{();

if(0 == mpi_rank)
cout << "Chunks have been read from disk\n";

for(int 1 = 0; i < mpi_size; ++1i)
{
if(i == mpi_rank)
{
cout << "Rank " << mpi_rank << " - Read chunk contains:\n";

for(size_t row = 0; row < chunk_extent[0]; ++row)

{

for(size_t col = 0; col < chunk_extent[1l]; ++col)
cout << "\t"
<< ' (' << row + chunk_offset[0] << '"|' << col + chunk_
—offset[1] << "|' << 1 << ")\t"

<< chunk_data.get () [rowxchunk_extent[1]+col];
cout << std::endl;

// this barrier is not necessary but structures the example output
MPI_Barrier (MPI_COMM_WORLD) ;

// openPMD::Series MUST be destructed at this point
MPI_Finalize();

return 0;

Python

IMPORTANT: include mpidpy FIRST

https://mpidpy.readthedocs.io/en/stable/mpidpy.run.html
on import: calls MPI_Init_thread()

exit hook: calls MPI Finalize()

from mpidpy import MPI

import openpmd_api as io

if _ name_ == "_ _main__ ":
also works with any other MPI communicator

(continues on next page)

3.4. Parallel Examples 51

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

comm = MPI.COMM_WORLD

series = io.Series(
"../samples/git-sample/data%T.h5",
io.Access.read_only,
comm
)
if 0 == comm.rank:
print ("Read a series in parallel with {} MPI ranks".format (
comm.size))

E_x = series.iterations[100] .meshes["E"] ["x"]

chunk_offset = [comm.rank + 1, 1, 1]
chunk_extent [2, 2, 1]

chunk_data = E_x.load_chunk (chunk_offset, chunk_extent)

if 0 == comm.rank:
print ("Queued the loading of a single chunk per MPI rank from disk, "
"ready to execute")
series.flush ()

if 0 == comm.rank:
print ("Chunks have been read from disk")

for i in range (comm.size):
if i == comm.rank:
print ("Rank {} - Read chunk contains:".format (i))
for row in range (chunk_extent[0]) :
for col in range (chunk_extent[1]):
print ("\t ({}|{}I1)\t{:e}".format (
row + chunk_offset[0],
col + chunk_offset[1],
chunk_data[row, col, 0]
), end="")
print ("")

this barrier is not necessary but structures the example output
comm.Barrier ()

The files in 'series' are still open until the object is destroyed, on
which it cleanly flushes and closes all open file handles.

One can delete the object explicitly (or let it run out of scope) to

trigger this.

In any case, this must happen before MPI_Finalize() is called

(usually in the mpid4py exit hook).

del series

3.4.2 Writing

C++

#include <openPMD/openPMD.hpp>
#include <mpi.h>

#include <iostream>
#include <memory>

(continues on next page)

52 Chapter 3. Usage

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

#include <vector> // std::vector

using std::cout;
using namespace openPMD;

int main(int argc, char xargv[])
{
MPI_Init (&argc, &argv);

int mpi_size;
int mpi_rank;

MPI_Comm_size (MPI_COMM_WORLD, &mpi_size);
MPI_Comm_rank (MPI_COMM_WORLD, &mpi_rank);

/#* note: this scope is intentional to destruct the openPMD::Series object
* prior to MPI_Finalize();
*/
{
// global data set to write: [MPI_Size x 10, 300]
// each rank writes a 10x300 slice with its MPI rank as values
auto const value = float (mpi_size);
std: :vector<float> local_data (
10 « 300, wvalue);
if(0 == mpi_rank)
cout << "Set up a 2D array with 10x300 elements per MPI rank (" << mpi_
—size
<< "x) that will be written to disk\n";

// open file for writing

Series series = Series|(
"../samples/5_parallel_write.h5",
Access: :CREATE,
MPI_COMM_WORLD

)

if(0 == mpi_rank)

cout << "Created an empty series in parallel with "
<< mpi_size << " MPI ranks\n";

MeshRecordComponent mymesh =
series
.1terations[1]
.meshes["mymesh"] [MeshRecordComponent : : SCALAR] ;

// example 1D domain decomposition in first index
Datatype datatype = determineDatatype<float>();
Extent global_extent = {10ul % mpi_size, 300};
Dataset dataset = Dataset (datatype, global_extent);

if(0 == mpi_rank)
cout << "Prepared a Dataset of size " << dataset.extent[0]
<< "x" << dataset.extent[1]
<< " and Datatype " << dataset.dtype << '\n';

mymesh.resetDataset (dataset);
if(0 == mpi_rank)
cout << "Set the global Dataset properties for the scalar field mymesh,
—in iteration 1\n";

// example shows a 1D domain decomposition in first index

(continues on next page)

3.4. Parallel Examples 53

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

Offset chunk_offset = {10ul % mpi_rank, 0};
Extent chunk_extent = {10, 300};
mymesh.storeChunk (local_data, chunk_offset, chunk_extent);
if(0 == mpi_rank)
cout << "Registered a single chunk per MPI rank containing its,_
—contribution, "
"ready to write content to disk\n";

series.flush{();

if(0 == mpi_rank)
cout << "Dataset content has been fully written to disk\n";

// openPMD::Series MUST be destructed at this point
MPI_Finalize();

return 0;

Python

IMPORTANT: include mpi4py FIRST

https://mpidpy.readthedocs.io/en/stable/mpidpy.run.html
on import: calls MPI_Init_thread()

exit hook: calls MPI_Finalize()

from mpidpy import MPI

import openpmd_api as io
import numpy as np

if _ name_ == "_ _main_ ":
also works with any other MPI communicator

comm = MPI.COMM_WORLD

global data set to write: [MPI_Size 10, 300]
each rank writes a 10x300 slice with its MPI rank as values
local_value = comm.size
local_data = np.ones (10 x 300,
dtype=np.double) .reshape (10, 300) =* local_value

if 0 == comm.rank:

print ("Set up a 2D array with 10x300 elements per MPI rank ({}x)

"that will be written to disk".format (comm.size))

open file for writing
series = 1o.Series(
"../samples/5_parallel_write_py.h5",
io.Access.create,
comm
)
if 0 == comm.rank:
print ("Created an empty series in parallel with {} MPI ranks".format (

comm.size))

mymesh = series.iterations[1]. \
meshes["mymesh"] [10.Mesh_Record_Component . SCALAR]

example 1D domain decomposition in first index
global_extent = [comm.size % 10, 300]

(continues on next page)

54 Chapter 3. Usage

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

dataset = io.Dataset (local_data.dtype, global_extent)

if 0 == comm.rank:
print ("Prepared a Dataset of size {} and Datatype {}".format (
dataset.extent, dataset.dtype))

mymesh.reset_dataset (dataset)
if 0 == comm.rank:
print ("Set the global Dataset properties for the scalar field "
"mymesh in iteration 1")

example shows a 1D domain decomposition in first index
mymesh[comm.rankx10: (comm.rank+1) 10, :] = local_data
if 0 == comm.rank:
print ("Registered a single chunk per MPI rank containing its "
"contribution, ready to write content to disk")

series.flush ()
if 0 == comm.rank:
print ("Dataset content has been fully written to disk")

The files in 'series' are still open until the object is destroyed, on
which it cleanly flushes and closes all open file handles.

One can delete the object explicitly (or let it run out of scope) to

trigger this.

del series

3.5 Streaming

Note: Data streaming is a novel backend and under active development. At the moment, the internal data format
is still changing rapidly and is likely not compatible between releases of the openPMD-api.

The openPMD API includes a streaming-aware API as well as streaming-enabled backends (currently: ADIOS2).

Unlike in file-based backends, the order in which data is put out becomes relevant in streaming-based backends.
Each iteration will be published as one atomical step by the streaming API (compare the concept of steps in
ADIOS?2).

3.5.1 Reading

The reading end of the streaming API enforces further restrictions that become necessary through the nature of
streaming. It can be used to read any kind of openPMD-compatible dataset, stream-based and filesystem-based
alike.

3.5. Streaming 55

https://adios2.readthedocs.io/en/latest/components/components.html#engine
https://adios2.readthedocs.io/en/latest/components/components.html#engine

openPMD-api Documentation, Release 0.13.0

C++

The reading end of the streaming API is activated through use of Series: :readIterations () instead of
accessing the field Series: :iterations directly. The returned object of type ReadIterations can be
used in a C++11 range-based for loop to iterate over objects of type IndexedIteration. This class extends the
Iteration class with a field IndexedIteration: :iterationIndex, denoting this iteration’s index.

Users are encouraged to explicitly .close () the iteration after reading from it. Closing the iteration will flush
all pending operations on that iteration. If an iteration is not closed until the beginning of the next iteration, it will
be closed automatically.

Note that a closed iteration cannot be reopened. This pays tribute to the fact that in streaming mode, an iteration
may be dropped by the data source once the data sink has finished reading from it.

#define BUILD_ STREAMING_EXAMPLE false
#1f BUILD_ STREAMING_ EXAMPLE
#include <openPMD/openPMD.hpp>

#include <array>
#incl
#include <memory>

ude <iostream>

using std::cout;
using namespace openPMD;

int

main ()

{

#1f openPMD HAVE_ADIOS2

using position_t = double;

Series series = Series("electrons.sst", Access::READ_ONLY);
for (IndexedIteration iteration : series.readIlterations())
{
std::cout << "Current iteration: " << iteration.iterationIndex
<< std::endl;
Record electronPositions = iteration.particles["e"]["position"];

std::array< std::shared_ptr< position_t >, 3 > loadedChunks;
std::array< Extent, 3 > extents;
std::array< std::string, 3 > const dimensions{ { "x", "y", "z" } };

for(size t i = 0; i < 3; ++1i)
{
std::string dim = dimensions[i 1;
RecordComponent rc = electronPositions[dim];
loadedChunks[i] = rc.loadChunk< position_t >(
Offset (rc.getDimensionality (), 0), rc.getExtent());
extents[1] = rc.getExtent();

iteration.close();

for(size_t i = 0; 1 < 3; ++i)
{
std::string dim = dimensions[1];
Extent const & extent = extents[1];
std::cout << "\ndim: " << dim << "\n" << std::endl;
auto chunk = loadedChunks[i 1;
for(size_ t j = 0; j < extent[0]; ++3)
{
std::cout << chunk.get()[j] << ", ";
}
std::cout << "\n—————————- \n" << std::endl;

(continues on next page)

56 Chapter 3. Usage

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

return 0O;
#else
std::cout << "The streaming example requires that openPMD has been built "
"with ADIOS2."
<< std::endl;
return 0O;

endif

— S

#else
int main() { return 0; }

H

#endi

Python

The reading end of the streaming API is activated through use of Series.read_iterations () instead of
accessing the field Series.iterations directly. The returned object of type ReadIterations canbe used
in a Python range-based for loop to iterate over objects of type IndexedIteration. This class extends the
Iteration class with a field IndexedIteration.iteration_index, denoting this iteration’s index.

Users are encouraged to explicitly .close () the iteration after reading from it. Closing the iteration will flush
all pending operations on that iteration. If an iteration is not closed until the beginning of the next iteration, it will
be closed automatically.

Note that a closed iteration cannot be reopened. This pays tribute to the fact that in streaming mode, an iteration
may be dropped by the data source once the data sink has finished reading from it.

#!/usr/bin/env python
import openpmd api as io

run_streaming_example = False

if not run_streaming_example:
exit (0)

if _ name_ == "__main_ ":

if 'adios2' not in io.variants or not io.variants(['adios2']:
print ('This example requires ADIOS2')
exit (0)

series = 1o.Series("stream.sst", io.Access_Type.read_only)

for iteration in series.read_iterations():
print ("Current iteration {}".format (iteration.iteration_index))

electronPositions = iteration.particles["e"] ["position"]
loadedChunks = []

shapes = []

dimensions = ["x", "y", "z"]

for i in range(3):
dim = dimensions[i]
rc = electronPositions[dim]
loadedChunks.append (rc.load_chunk ([0], rc.shape))
shapes.append (rc.shape)
iteration.close()

for i in range(3):
dim = dimensions([i]

(continues on next page)

3.5. Streaming 57

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

shape = shapes|[i]

print ("dim: {}".format (dim))
chunk = loadedChunks[i]
print (chunk)

3.5.2 Writing

The writing end of the streaming API enforces further restrictions that become necessary through the nature of
streaming. It can be used to write any kind of openPMD-compatible dataset, stream-based and filesystem-based
alike.

C++

The writing end of the streaming API is activated through use of Series::writelterations () instead
of accessing the field Series::iterations directly. The returned object of type WriteIterations
wraps the field Series::iterations, but exposes only a restricted subset of functionality. Using
Writelterations::operator[] (uint64_t) will automatically open a streaming step for the cor-
responding iteration.

Users are encouraged to explicitly .close () the iteration after writing to it. Closing the iteration will flush
all pending operations on that iteration. If an iteration is not closed until the next iteration is accessed via
WriteIterations::operator[] (uint64_t), itwill be closed automatically.

Note that a closed iteration cannot be reopened. This pays tribute to the fact that in streaming mode, an iteration
is sent to the sink upon closing it and the data source can no longer modify it.

fa]
oL ralse

I

nclude <iostream>

P
#include <memory>
#

7

#include <numeric> // std::iota

using std::cout;
using namespace openPMD;

int

main ()

{

#1f openPMD_ HAVE ADIOS2

using position_t = double;

// open file for writing
Series series = Series("electrons.sst", Access::CREATE);

Datatype datatype = determineDatatype< position_t >();
constexpr unsigned long length = 10ul;
Extent global_extent = { length };
Dataset dataset = Dataset (datatype, global_extent);
std: :shared_ptr< position_t > local_data(

new position_t[length],

[1(position_t const x ptr) { deletel[] ptr; });
Writelterations iterations = series.writelterations();
for(size_t i = 0; i < 100; ++1i)

{
Iteration iteration = iterations[1 1;

(continues on next page)

58 Chapter 3. Usage

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

Record electronPositions = iteration.particles["e"]["position"];

std::iota(local_data.get (), local_data.get() + length, i * length);
for(auto const & dim : { "x", "y", "z" })
{
RecordComponent pos = electronPositions[dim];
pos.resetDataset (dataset);
pos.storeChunk (local_data, Offset{ 0 }, global_extent);
}

iteration.close();

std::cout << "The streaming example requires that openPMD has been built "
"with ADIOS2."
<< std::endl;
return 0O;

#endif
}

#else
int main() { return 0; }

#endif
Python
The writing end of the streaming API is activated through use of Series.write_iterations ()
instead of accessing the field Series.iterations directly. The returned object of type
WriteIterations wraps the field Series.iterations, but exposes only a restricted subset of
functionality. Using WriteIterations.__getitem (index) (i.e. the index operator series.

writeIterations () [index]) will automatically open a streaming step for the corresponding iteration.

Users are encouraged to explicitly .close () the iteration after writing to it. Closing the iteration will flush
all pending operations on that iteration. If an iteration is not closed until the next iteration is accessed via
WritelIterations.__getitem__ (index), it will be closed automatically.

Note that a closed iteration cannot be reopened. This pays tribute to the fact that in streaming mode, an iteration
is sent to the sink upon closing it and the data source can no longer modify it.

#!/usr/bin/env python
import openpmd api as io
import numpy as np

run_streaming_example = False

if not run_streaming_example:
exit (0)

if name == "_main__":

if 'adios2' not in io.variants or not io.variants['adios2']:

print ('This example requires ADIOS2')
exit (0)
series = io.Series("stream.sst", io.Access_Type.create)

datatype = np.dtype ("double™)

length = 10

global_extent = [10]

dataset = io.Dataset (datatype, global_extent)

iterations = series.write_iterations ()

(continues on next page)

3.5. Streaming 59

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

for i in range(100):
iteration = iterations([i]
electronPositions = iteration.particles["e"] ["position"]

local_data = np.arange (i * length, (i + 1) = length, dtype=datatype)
for dim in ["x", "y", "z"]:

pos = electronPositions[dim]

pos.reset_dataset (dataset)

pos[()] = local_data
iteration.close ()

3.6 Benchmarks

3.6.1 Parallel benchmarks 8a & 8b

The following examples show parallel reading and writing of domain-decomposed data with MPI.

The Message Passing Interface (MPI) is an open communication standard for scientific computing. MPI is used
on clusters, e.g. large-scale supercomputers, to communicate between nodes and provides parallel I/O primitives.

Writing

Source: examples/8a_benchmark_write_parallel.cpp
This benchmark writes a few meshes and particles, either 1D, 2D or 3D.

The meshes are viewed as grid of mini blocks. As an example, we assume the mini blocks dimension are [16, 32,
32].

Next we define the grid based on the mini block. say, [32, 32, 16]. Then our actual mesh size is [16x32, 32x32,
32x16].

Here is a sample input file (“w.input”):

dim=3
balanced=true
ratio=1

steps=10
minBlock=16 32 32
grid=32 32 16

With the above input file, we will create an openPMD file with the above mesh using
* 3D data
* balanced load
* particle to mesh ratio = 1
* 10 iteration steps
Note: All files generated are group based. i.e. One file per iteration.
To run:
./8a_benchmark_write_parallel w.input

then the file generated are: ../samples/8a_parallel_3Db_*

60 Chapter 3. Usage

https://www.mpi-forum.org/

openPMD-api Documentation, Release 0.13.0

Reading

Source: examples/8b_benchmark_read_parallel.cpp
This benchmark is to read from the files written by 8a.
The options are: a file prefix, and a read pattern

For example, if the files are in the format of /path/8a_parallel_3Db_%07T.bp the input will be: /
path/8a_parallel_3Db <options>

The Read options intent to measure overall processing time in the following categories:
* Metadata only (option = m)
e or data retrieval (after metadata loaded)
The data retrieval is furthur divided into:
* slice the “rho” mesh (options = sx/sy/sz depends on which direction. e.g. sx implies x=0.)

¢ slice on the 3D magnetic field(e.g. find values for “Bx”, “By” and “Bz”) (options = fx/fy/fz de-
pends on which direction. e.g. £x implies x=0.)

So here are the options one can use to read a file:
*m
* sX
. sy
* sz
o fx
. fy
e fz
For example, To read files generated by the above write commmand, metadata only:

./8b_benchmark_read_parallel ../samples/8a_parallel_3Db m

More complicated Writing options (Applies to ADIOS BP)
The ADIOS BP files uses subfiles to store data from each rank. We have an option to provide hint on how data
should be divided per rank in the command line: the order of options are:
* grid of minimal blockslbalancelparticle2mesh ratio
* minial blocks
* use multiple blocks
e num of timesteps,
* dimensions
* hint on work load arrangement.
Example: “mpirun -n 4 ./8a_benchmark_write_parallel 400801 16016 1 5 3 4004002 “

Here 4 ranks are used to write a 3D mesh, minimal block is [16,16,16], grid of minimal block is [8,4,4], so the
actual mesh = [16x8, 16x4, 16x4]. Number of timestep = 5.

The hint is asking each rank to work on a [16x2, 16x4, 16x4] block. It precisely cover the mesh with 4 ranks, so
will be applied.

3.6. Benchmarks 61

openPMD-api Documentation, Release 0.13.0

3.6.2 Benchmark Utilities

Further benchmarks are fund in urilities.

3.7 All Examples

The full list of example scripts shown below is also contained in our examples/ folder.

Example data sets can be downloaded from: github.com/openPMD/openPMD-example-datasets. The following
command will automatically install those into samples/ on Linux and OSX: curl -sSL https://git.
io/JewVw | bash

3.7.1 C++

e 1_structure.cpp: creating a first series

e 2 _read_serial.cpp: reading a mesh

e 2a_read_thetaMode_serial.cpp: read an azimuthally decomposed mesh (and reconstruct it)
* 3_write_serial.cpp: writing a mesh

* 3a_write_thetaMode_serial.cpp: write an azimuthally decomposed mesh

* 4 read_parallel.cpp: MPI-parallel mesh read

* 5_write_parallel.cpp: MPI-parallel mesh write

* 6_dump_filebased_series.cpp: detailed reading with a file-based series

e 7_extended_write_serial.cpp: particle writing with patches and constant records

Benchmarks

* 8_benchmark_parallel.cpp: a MPI-parallel IO-benchmark

» 8a_benchmark_write_parallel.cpp: creates 1D/2D/3D arrays, with each rank having a few blocks to write
to

* 8b_benchmark_read_parallel.cpp: read slices of meshes and particles

3.7.2 Python

e 2_read_serial.py: reading a mesh

* 2a_read_thetaMode_serial.py: reading an azimuthally decomposed mesh (and reconstruct it)
e 3_write_serial.py: writing a mesh

* 3a_write_thetaMode_serial.py: write an azimuthally decomposed mesh

e 4 _read_parallel.py: MPI-parallel mesh read

e 5_write_parallel.py: MPI-parallel mesh write

» 7_extended_write_serial.py: particle writing with patches and constant records

e O particle_write_serial.py: writing particles

62 Chapter 3. Usage

https://github.com/openPMD/openPMD-example-datasets
https://github.com/openPMD/openPMD-api/blob/dev/examples/1_structure.cpp
https://github.com/openPMD/openPMD-api/blob/dev/examples/2_read_serial.cpp
https://github.com/openPMD/openPMD-api/blob/dev/examples/2a_read_thetaMode_serial.cpp
https://github.com/openPMD/openPMD-api/blob/dev/examples/3_write_serial.cpp
https://github.com/openPMD/openPMD-api/blob/dev/examples/3a_write_thetaMode_serial.cpp
https://github.com/openPMD/openPMD-api/blob/dev/examples/4_read_parallel.cpp
https://github.com/openPMD/openPMD-api/blob/dev/examples/5_write_parallel.cpp
https://github.com/openPMD/openPMD-api/blob/dev/examples/6_dump_filebased_series.cpp
https://github.com/openPMD/openPMD-api/blob/dev/examples/7_extended_write_serial.cpp
https://github.com/openPMD/openPMD-api/blob/dev/examples/8_benchmark_parallel.cpp
https://github.com/openPMD/openPMD-api/blob/dev/examples/8a_benchmark_write_parallel.cpp
https://github.com/openPMD/openPMD-api/blob/dev/examples/8b_benchmark_read_parallel.cpp
https://github.com/openPMD/openPMD-api/blob/dev/examples/2_read_serial.py
https://github.com/openPMD/openPMD-api/blob/dev/examples/2a_read_thetaMode_serial.py
https://github.com/openPMD/openPMD-api/blob/dev/examples/3_write_serial.py
https://github.com/openPMD/openPMD-api/blob/dev/examples/3a_write_thetaMode_serial.py
https://github.com/openPMD/openPMD-api/blob/dev/examples/4_read_parallel.py
https://github.com/openPMD/openPMD-api/blob/dev/examples/5_write_parallel.py
https://github.com/openPMD/openPMD-api/blob/dev/examples/7_extended_write_serial.py
https://github.com/openPMD/openPMD-api/blob/dev/examples/9_particle_write_serial.py

openPMD-api Documentation, Release 0.13.0

3.7.3 Unit Tests

Our unit tests in the test / folder might also be informative for advanced developers.

3.7. All Examples 63

openPMD-api Documentation, Release 0.13.0

64 Chapter 3. Usage

CHAPTER
FOUR

API DETAILS

41 C++

Our Doxygen page provides an index of all C++ functionality.

4.1.1 Public Headers

#include ... the following headers to use openPMD-api:
Include Description
<openPMD/openPMD. hpp> Public facade header (serial and MPI)
<openPMD/benchmark/...> | Optional benchmark helpers

4.1.2 External Documentation

If you want to link to the openPMD-api doxygen index from an external documentation, you can find the Doxygen
tag file here.

If you want to use this tag file with e.g. xeus-cling, add the following in its configuration directory:

{

"url": "https://openpmd-api.readthedocs.io/en/<adjust-version-of-tag-file-here>
—/_static/doxyhtml/",

"tagfile": "openpmd-api-doxygen-web.tag.xml"
}

4.2 Python

4.2.1 Public Headers

import ... the following python module to use openPMD-api:

Import Description
openpmd_api | Public facade import (serial and MPI)

Note: As demonstrated in our python examples, MPI-parallel scripts must import from mpidpy import
MP I prior to importing openpmd_api in order to initialize MPI first.

Otherwise, errors of the following kind will occur:

65

../_static/doxyhtml/index.html
http://www.doxygen.nl/manual/external.html
../_static/doxyhtml/openpmd-api-doxygen-web.tag.xml
../_static/doxyhtml/openpmd-api-doxygen-web.tag.xml
https://xeus-cling.readthedocs.io/en/latest/inline_help.html
https://mpi4py.readthedocs.io/en/stable/mpi4py.run.html

openPMD-api Documentation, Release 0.13.0

The MPI_Comm_test_inter () function was called before MPI_INIT was invoked.
This is disallowed by the MPI standard.
Your MPI job will now abort.

4.3 MPI

4.3.1 Collective Behavior

openPMD-api is designed to support both serial as well as parallel I/O. The latter is implemented through the
Message Passing Interface (MPI).

A collective operation needs to be executed by all MPI ranks of the MPI communicator that was passed to
openPMD: : Series. Contrarily, independent operations can also be called by a subset of these MPI ranks.
For more information, please see the MPI standard documents, for example MPI-3.1 in “Section 2.4 - Semantic
Terms”.

Functionality Behavior Description
Series collective open and close
::flush () collective read and write
Iteration' independent declare and open
: zopen ()’ collective explicit open
Mesh! independent declare, open, write
ParticleSpecies' | independent declare, open, write
::setAttribute’ | backend-specific | declare, write
::getAttribute independent open, reading
: :storeChunk! independent write
: :loadChunk independent read

Tip:

to describe the same mesh.

Just because an operation is independent does not mean it is allowed to be inconsistent. For example,

undefined behavior will occur if ranks pass differing values to : : setAttribute or try to use differing names

4.3.2 Efficient Parallel 1/0 Patterns

Note: This section is a stub. We will improve it in future versions.

Werite as large data set chunks as possible in :

: storeChunk operations.

Read in large, non-overlapping subsets of the stored data (: : LoadChunk). Ideally, read the same chunk extents
as were written, e.g. through ParticlePatches (example to-do).

See the implemented I/O backends for individual tuning options.

! Individual backends, e.g. HDFS5, will only support independent operations if the default, non-collective behavior is kept. (Otherwise
these operations are collective.)

3 We usually open iterations delayed on first access. This first access is usually the flush () call after a st oreChunk/loadChunk
operation. If the first access is non-collective, an explicit, collective Iteration: :open () can be used to have the files already open.

2 HDF5 only supports collective attribute definitions/writes; ADIOSI and ADIOS? attributes can be written independently. If you want to
support all backends equally, treat as a collective operation.

66 Chapter 4. API Details

https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

openPMD-api Documentation, Release 0.13.0

4.4 Backend-Specific Configuration

While the openPMD API intends to be a backend-independent implementation of the openPMD standard, it is
sometimes useful to pass configuration parameters to the specific backend in use. For each backend, configuration
options can be passed via a JSON-formatted string or via environment variables. A JSON option always takes
precedence over an environment variable.

The fundamental structure of this JSON configuration string is given as follows:

{

"adios": "put ADIOS config here",
"adios2": "put ADIOS2 config here",
"hdf5": "put HDF5 config here",
"json": "put JSON config here"

This structure allows keeping one configuration string for several backends at once, with the concrete backend
configuration being chosen upon choosing the backend itself.

The configuration is read in a case-sensitive manner. Generally, keys of the configuration are lower case. Pa-
rameters that are directly passed through to an external library and not interpreted within openPMD API (e.g.
adios2.engine.parameters) are unaffected by this and follow the respective library’s conventions.

The configuration string may refer to the complete openPMD: : Series or may additionally be specified per
openPMD: :Dataset, passed in the respective constructors. This reflects the fact that certain backend-specific
parameters may refer to the whole Series (such as storage engines and their parameters) and others refer to actual
datasets (such as compression).

For a consistent user interface, backends shall follow the following rules:
* The configuration structures for the Series and for each dataset should be defined equivalently.
* Any setting referring to single datasets should also be applicable globally, affecting all datasets.

* If a setting is defined globally, but also for a concrete dataset, the dataset-specific setting should override
the global one.

 If a setting is passed to a dataset that only makes sense globally (such as the storage engine), the setting
should be ignored except for printing a warning. Backends should define clearly which keys are applicable
to datasets and which are not.

4.4.1 Configuration Structure per Backend

ADIOS2

A full configuration of the ADIOS2 backend:

{

"adios2": {
"engine": {
"type": "sst",
"parameters": {
"BufferGrowthFactor": "2.0",
"QueueLimit": "2"

}
b
"dataset": {

"operators": |
{
"type": "blosc",
"parameters": {
"clevel": "1",

(continues on next page)

4.4. Backend-Specific Configuration 67

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

"doshuffle": "BLOSC_BITSHUFFLE"

All keys found under adios2.dataset are applicable globally as well as per dataset, keys found under
adios2.engine only globally. Explanation of the single keys:

* adios2.engine.type: A string that is passed directly to adios2: : I0: : : SetEngine for choosing
the ADIOS?2 engine to be used. Please refer to the official ADIOS2 documentation for a list of available
engines.

* adios2.engine.parameters: An associative array of string-formatted engine parameters, passed di-
rectly through to adios2: :I0: : SetParameters. Please refer to the official ADIOS2 documentation
for the allowable engine parameters.

* adios2.engine.usesteps: Described more closely in the documentation for the ADIOS2 backend.

* adios2.dataset.operators: This key contains a list of ADIOS2 operators, used to enable com-
pression or dataset transformations. Each object in the list has two keys:

— type supported ADIOS operator type, e.g. zfp, sz
— parameters is an associative map of string parameters for the operator (e.g. compression levels)

Any setting specified under adios2.dataset is applicable globally as well as on a per-dataset level. Any
setting under adios2.engine is applicable globally only.

Other backends

Do currently not read the configuration string. Please refer to the respective backends’ documentations for further
information on their configuration.

68 Chapter 4. API Details

https://adios2.readthedocs.io/en/latest/engines/engines.html
https://adios2.readthedocs.io/en/latest/components/components.html#operator

CHAPTER
FIVE

UTILITIES

5.1 Command Line Tools

openPMD-api installs command line tools alongside the main library. These terminal-focused tools help to quickly
explore, manage or manipulate openPMD data series.

5.1.1 openpmd-1s

List information about an openPMD data series.

The syntax of the command line tool is printed via:

openpmd-1s ——-help

With some pip-based python installations, you might have to run this as a module:

’python -m openpmd_api.ls —-help

5.2 Benchmark

The openPMD API provides utilities to quickly configure and run benchmarks in a flexi-
ble fashion. The starting point for configuring and running benchmarks is the class template
Benchmark<DatasetFillerProvider>.

ude "openPMD/benchmark/mpi/Benchmark.hpp"

An object of this class template allows to preconfigure a number of benchmark runs to execute, each run specified
by:

* The compression configuration, consisting itself of the compression string and the compression level.

* The backend to use, specified by the filename extension (e.g. “h5”, “bp”, “json”, ...).

» The type of data to write, specified by the openPMD datatype.

e The number of ranks to use, not greater than the MPI size. An overloaded version of
addConfiguration () exists that picks the MPI size.

* The number 7 of iterations. The benchmark will effectively be repeated n times.
The benchmark object is globally (i.e. by its constructor) specified by:

* The base path to use. This will be extended with the chosen backend’s filename extension. Benchmarks
might overwrite each others’ files.

¢ The total extent of the dataset across all MPI ranks.

69

openPMD-api Documentation, Release 0.13.0

* The BlockSlicer,i.e. an object telling each rank which portion of the dataset to write to and read from.
Most users will be content with the implementation provided by OneDimensionalBlockSlicer that
will simply divide the dataset into hyperslabs along one dimension, default = 0. This implementation can
also deal with odd dimensions that are not divisible by the MPI size.

* A DatasetFillerProvider. DatasetFiller<T> is an abstract class template whose job
is to create the write data of type T for one run of the benchmark. Since one Benchmark ob-
ject allows to use several datatypes, a DatasetFillerProvider is needed to create such objects.
DatasetFillerProvider is a template parameter of the benchmark class template and should be a
templated functor whose operator () <T> () returns a shared_ptr<DatasetFiller<T>> (or a
value that can be dynamically casted to it). For users seeking to only run the benchmark with one datatype,
the class template SimpleDatasetFillerProvider<DF> will lift a DatasetFiller<T> to a
DatasetFillerProvider whose operator () <T'> () will only successfully return if T and T'
are the same type.

¢ The MPI Communicator.

The class template RandomDatasetFiller<Distr, T> (where by default T = typename
Distr::result_type) provides an implementation of the DatasetFiller<T> that lifts a random
distribution to a DatasetFiller. The general interface of a DatasetFiller<T> is kept simple, but an
implementation should make sure that every call to DatasetFiller<T>: :produceData () takes roughly
the same amount of time, thus allowing to deduct from the benchmark results the time needed for producing data.

The configured benchmarks are run one after another by calling the method Benchmark<...
>::runBenchmark<Clock> (int rootThread). The Clock template parameter should meet the require-
ments of a trivial clock. Although every rank will return a BenchmarkReport<typename Clock: :rep>,
only the report of the previously specified root rank will be populated with data, i.e. all ranks’ data will be collected
into one report.

5.2.1 Example Usage

<openPMD/openPMD . hpp>
<openPMD/benchmark/mpi/MPIBenchmark.hpp>
<openPMD/benchmark/mpi/RandomDatasetFiller.hpp>
<openPMD/benchmark/mpi/OneDimensionalBlockSlicer.hpp>

He

include <iostream>

#1f openPMD HAVE_MPI
int main(

int argc,

char xargv/[]

using namespace std;
MPI_Init (

&argc,

&argv
)i

// For simplicity, use only one datatype in this benchmark.

// Note that a single Benchmark object can be used to configure

// multiple different benchmark runs with different datatypes,

// given that you provide it with an appropriate DatasetFillerProvider
// (template parameter of the Benchmark class).

using type = long int;

(continues on next page)

70 Chapter 5. Utilities

https://en.cppreference.com/w/cpp/named_req/TrivialClock

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

#1f openPMD_HAVE_ADIOS1 || openPMD_ HAVE_ADIOSZ2 || openPMD_ HAVE_HDF5
openPMD: :Datatype dt = openPMD::determineDatatype<type>();
#endif

// Total (in this case 4D) dataset across all MPI ranks.
// Will be the same for all configured benchmarks.
openPMD: :Extent total{

100,

100,

100,

10
}i

// The blockslicer assigns to each rank its part of the dataset. The rank will
// write to and read from that part. OneDimensionalBlockSlicer is a simple

// implementation of the BlockSlicer abstract class that will divide the

// dataset into hyperslab along one given dimension.

// If you wish to partition your dataset in a different manner, you can

// replace this with your own implementation of BlockSlicer.

auto blockSlicer = std::make_shared<openPMD: :0OneDimensionalBlockSlicer>(0);

// Set up the DatasetFiller. The benchmarks will later inquire the_
—DatasetFiller
// to get data for writing.
std::uniform_int_distribution<type> distr(
0,
200000000
)i
openPMD: :RandomDatasetFiller<decltype (distr)> df{distr};

// The Benchmark class will in principle allow a user to configure

// runs that write and read different datatypes.

// For this, the class is templated with a type called DatasetFillerProvider.

// This class serves as a factory for DatasetFillers for concrete types and

// should have a templated operator ()<T>() returning a value

// that can be dynamically casted to a std::shared ptr<openPMD::DatasetFiller
S <T>>

// The openPMD API provides only one implementation of a DatasetFillerProvider,

// namely the SimpleDatasetFillerProvider being used in this example.

// Its purpose 1is to leverage a DatasetFiller for a concrete type (df in this,,
—example)

// to a DatasetFillerProvider whose operator ()<T>() will fail during runtime
—1f T does

// not correspond with the underlying DatasetFiller.

// Use this implementation if you only wish to run the benchmark for one_
—~Datatype,

// otherwise provide your own Implementation of DatasetFillerProvider.

openPMD: : SimpleDatasetFillerProvider<decltype (df)> dfp{df};

// Create the Benchmark object. The file name (first argument) will be extended
// with the backends' file extensions.
openPMD: :MPIBenchmark<decltype (dfp) > benchmark{

"../benchmarks/benchmark",

total,
std: :dynamic_pointer_cast<openPMD: :BlockSlicer> (blockSlicer),
dfp,

}i

// Add benchmark runs to be executed. This will only store the configuration,,
—and not
// run the benchmark yet. Each run is configured by:

(continues on next page)

5.2. Benchmark 71

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

// #* The compression scheme to use (first two parameters). The first parameter,
—chooses

// the compression scheme, the second parameter is the compression level.

// + The backend (by file extension).

// % The datatype to use for this run.

// #* The number of iterations. Effectively, the benchmark will be repeated for,
—this many

// times.
#1f openPMD_HAVE_ADIOS1 || openPMD_HAVE_ADIOSZ2

benchmark.addConfiguration("", 0, "bp", dt, 10);
#endif
#1f openPMD_HAVE_HDF5

benchmark.addConfiguration("", 0, "hb5", dt, 10);
#endif

// Execute all previously configured benchmarks. Will return a_
—MPIBenchmarkReport object

// with write and read times for each configured run.

// Take notice that results will be collected into the root rank's report,_
—~object, the other

// ranks' reports will be empty. The root rank is specified by the first,,
—parameter of runBenchmark,

// the default being 0.

auto res =

benchmark.runBenchmark<std::chrono::high_resolution_clock>();

int rank;
MPI_Comm_rank (
MPI_COMM_WORLD,

&rank
)
if(rank == 0)
{
for(auto it = res.durations.begin();
it != res.durations.end();
it++)
{
auto time = it->second;
std::cout << "on rank " << std::get<res.RANK> (it->first)

<< "\t with backend "

<< std::get<res.BACKEND> (it->first)

<< "\twrite time: "

<< std::chrono::duration_cast<std::chrono::milliseconds> (
time.first

)y .count () << "\tread time: "

<< std::chrono::duration_cast<std::chrono::milliseconds> (
time.second

) .count () << std::endl;

MPI_Finalize();
}
#else
int main (void)
{
return 0O;
}
#endif

72 Chapter 5. Utilities

CHAPTER
SIX

6.1

BACKENDS

Overview

This section provides an overview of features in I/O backends.

Feature ADIOS1 ADIOS2 | HDF5 [JSON
Operating Systems | Linux, OSX | Linux, OSX, Windows

Serial supported supported supported | supported
MPI-parallel supported supported | supported | no
Dataset deletion no no supported | supported
Compression upcoming supported | upcoming | no
Streaming/Staging | not exposed | upcoming | no no
Portable Files limited awaiting yes yes
PByte-scalable yes yes no no
Performance A TBD B C

Native File Format | .bp (BP3) .bp (BP4) | .h5 . json

supported/yes: implemented and accessible for users of openPMD-api
upcoming: planned for upcoming releases of openPMD-api

limited: for example, limited to certain datatypes

awaiting: planned for upcoming releases of a dependency

TBD: to be determined (e.g. with upcoming benchmarks)

6.1.1 Selected References

6.2

Axel Huebl, Rene Widera, Felix Schmitt, Alexander Matthes, Norbert Podhorszki, Jong Youl Choi, Scott
Klasky, and Michael Bussmann. On the Scalability of Data Reduction Techniques in Current and Upcoming
HPC Systems from an Application Perspective, ISC High Performance 2017: High Performance Computing,
pp- 15-29, 2017. arXiv:1706.00522, DOI:10.1007/978-3-319-67630-2_2

JSON

openPMD supports writing to and reading from JSON files. The JSON backend is always available.

73

https://arxiv.org/abs/1706.00522
https://doi.org/10.1007/978-3-319-67630-2_2

openPMD-api Documentation, Release 0.13.0

6.2.1 JSON File Format

A JSON file uses the file ending . json. The JSON backend is chosen by creating a Series object with a
filename that has this file ending.

The top-level JSON object is a group representing the openPMD root group "/". Any openPMD group is
represented in JSON as a JSON object with two reserved keys:

* attributes: Attributes associated with the group. This key may be null or not be present at all, thus
indicating a group without attributes.

* platform_byte_widths (root group only): Byte widths specific to the writing platform. Will be
overwritten every time that a JSON value is stored to disk, hence this information is only available about
the last platform writing the JSON value.

All datasets and subgroups contained in this group are represented as a further key of the group object.
attributes and platform_byte_widths have hence the character of reserved keywords and cannot be
used for group and dataset names when working with the JSON backend. Datasets and groups have the same
namespace, meaning that there may not be a subgroup and a dataset with the same name contained in one group.

Any openPMD dataset is a JSON object with three keys:

* attributes: Attributes associated with the dataset. May be null or not present if no attributes are
associated with the dataset.

e datatype: A string describing the type of the stored data.

* data A nested array storing the actual data in row-major manner. The data needs to be consistent with the
fields datatype and extent. Checking whether this key points to an array can be (and is internally)
used to distinguish groups from datasets.

Attributes are stored as a JSON object with a key for each attribute. Every such attribute is itself a JSON object
with two keys:

* datatype: A string describing the type of the value.

e value: The actual value of type datatype.

6.2.2 Restrictions

For creation of JSON serializations (i.e. writing), the restrictions of the JSON backend are equivalent to those of
the JSON library by Niels Lohmann used by the openPMD backend.

Numerical values, integral as well as floating point, are supported up to a length of 64 bits. Since JSON does not
support special floating point values (i.e. NaN, Infinity, -Infinity), those values are rendered as null.

Instructing openPMD to write values of a datatype that is too wide for the JSON backend does not result in an
error:

e If casting the value to the widest supported datatype of the same category (integer or floating
point) is possible without data loss, the cast is performed and the value is written. As an ex-
ample, on a platform with sizeof (double) == 8, writing the value static_cast<long
double> (std::numeric_limits<double>: :max ()) will work as expected since it can be cast
back to double.

e Otherwise, a null value is written.

Upon reading null when expecting a floating point number, a NaN value will be returned. Take notice that a
NaN value returned from the deserialization process may have originally been +/-Infinity or beyond the supported
value range.

Upon reading null when expecting any other datatype, the JSON backend will propagate the exception thrown
by Niels Lohmann’s library.

The (keys) names "attributes", "data" and "datatype" are reserved and must not be used for
base/mesh/particles path, records and their components.

74 Chapter 6. Backends

https://github.com/nlohmann/json

openPMD-api Documentation, Release 0.13.0

A parallel (i.e. MPI) implementation is not available.

6.2.3 Example

The example code in the usage section will produce the following JSON serialization when picking the JSON
backend:

"attributes": {

"basePath": {
"datatype": "STRING",
"value": "/data/%T/"

}I

"iterationEncoding": {
"datatype": "STRING",
"value": "groupBased"

}I

"iterationFormat": {
"datatype": "STRING",
"value": "/data/$T/"

}I

"meshesPath": {
"datatype": "STRING",
"value": "meshes/"

}I

"openPMD": {

"datatype": "STRING",
"value": "1.1.0"
b
"openPMDextension": {
"datatype": "UINT",
"value": O
}
b
"data": {
||1n: {
"attributes": {
lldt": {
"datatype": "DOUBLE",
"value": 1
br
"time": {
"datatype": "DOUBLE",

"value": 0
}I
"timeUnitSI": {
"datatype": "DOUBLE",
"value": 1
}
}I
"meshes": {
"rho": {
"attributes": {
"axisLabels": {
"datatype": "VEC_STRING",
"value": [
llx"
]

by
"dataOrder": {
"datatype": "STRING",

(continues on next page)

6.2. JSON 75

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

"value n . "CH

I

"geometry": {
"datatype": "STRING",
"value": "cartesian"

b

"gridGlobalOffset": {

"datatype":
"value": |
0
]
}l
"gridSpacing":
"datatype":
"value": |
1
]
}l
"gridUnitSI":
"datatype":
"value": 1
}I
"position": {

"VEC_DOUBLE",

{
"WEC_DOUBLE",

{
"DOUBLE",

"datatype": "VEC_DOUBLE",
"value": |
0
]
}I
"timeOffset": {
"datatype": "FLOAT",
"value": 0
}I
"unitDimension": {
"datatype": "ARR_DBL_7",
"value": [
OI
OI
0,
OI
OI
0,
0
]
by
"unitSI": {
"datatype": "DOUBLE",
"value": 1
}
}!
"data": [
[
OI
ll
2
]I
[
3/
4/
5

(continues on next page)

76

Chapter 6. Backends

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

"datatype": "DOUBLE"

}
s
"platform_byte widths": {

"BOOL": 1,
"CHAR": 1,
"DOUBLE": 8,
"FLOAT": 4,
"INT": 4,
"LONG": 8,

"LONGLONG": 8,
"LONG_DOUBLE": 16,

"SHORT": 2,
"UCHAR": 1,
"UINT": 4,
"ULONG": 8,
"ULONGLONG": 8,
"USHORT": 2
}
}
6.3 ADIOS1

openPMD supports writing to and reading from ADIOSI1 .bp files. For this, the installed copy of openPMD
must have been built with support for the ADIOS1 backend. To build openPMD with support for ADIOS, use the
CMake option ~-DopenPMD_USE_ADIOS1=0N. For further information, check out the installation guide, build
dependencies and the build options.

Note: This backend is deprecated, please use ADIOS?2 instead.

6.3.1 1/0 Method

ADIOS1 has several staging methods for alternative file formats, yet natively writes to .bp files. We cur-
rently implement the MPI_AGGREGATE transport method for MPI-parallel write (POSIX for serial write) and
ADIOS_READ_METHOD_BP for read.

6.3.2 Backend-Specific Controls

The following environment variables control ADIOS1 I/O behavior at runtime. Fine-tuning these is especially
useful when running at large scale.

6.3. ADIOS1 77

openPMD-api Documentation, Release 0.13.0

environment variable de- description
fault
OPENPMD_ADIOS_NUM_ AGGREGATDRS Number of I/O aggregator nodes for ADIOSI
MPI_AGGREGATE transport method.

OPENPMD_ADIOS_NUM_OST 0 Number of I/O OSTs for ADIOS1 MPI_AGGREGATE trans-
port method.

OPENPMD_ADIOS_HAVE_METADATE_FILEOnline creation of the adios journal file (1: yes, 0: no).

OPENPMD_BP_BACKEND ADIOS2 Chose preferred .Dbp file backend if ADIOS1 and ADIOS?2

are available.

Please refer to the ADIOS1 manual, section 6.1.5 for details on I/O tuning.

In case both the ADIOS1 backend and the ADIOS2 backend are enabled, set OPENPMD_BP_BACKEND to
ADIOSI to enforce using ADIOSI. If only the ADIOS1 backend was compiled but not the ADIOS2 backend,
the default of OPENPMD_BP_BACKEND is automatically switched to ADIOS1. Be advised that ADIOS1 only
supports . bp files up to the internal version BP3, while ADIOS2 supports BP3, BP4 and later formats.

6.3.3 Best Practice at Large Scale

A good practice at scale is to disable the online creation of the metadata file. After writing the data, run bpmeta
on the (to-be-created) filename to generate the metadata file offline (repeat per iteration for file-based encoding).
This metadata file is needed for reading, while the actual heavy data resides in <metadata filename>.dir/
directories.

Further options depend heavily on filesystem type, specific file striping, network infrastructure and available RAM
on the aggregator nodes. If your filesystem exposes explicit object-storage-targets (OSTs), such as Lustre, try to
set the number of OSTs to the maximum number available and allowed per job (e.g. non-full), assuming the
number of writing MPI ranks is larger. A good number for aggregators is usually the number of contributing
nodes divided by four.

For fine-tuning at extreme scale or for exotic systems, please refer to the ADIOS1 manual and talk to your filesys-
tem admins and the ADIOS1 authors. Be aware that extreme-scale I/O is a research topic after all.

6.3.4 Limitations

Note: You cannot initialize and use more than one openPMD: : Series with ADIOS1 backend at the same
time in a process, even if both Series operate on totally independent data. This is an upstream bug in ADIOS1 that
we cannot control: ADIOS1 cannot be initialized more than once, probably because it shares some internal state.

Note: The way we currently implement ADIOS1 in openPMD-api is sub-ideal and we close/re-open file handles
way too often. Consequently, this can lead to severe performance degradation unless fixed. Mea culpa, we did
better in the past (in PIConGPU). Please consider using our ADIOS2 backend instead, on which we focus our
developments these days.

Note: ADIOSI does not support attributes that are arrays of complex types.

78 Chapter 6. Backends

https://users.nccs.gov/~pnorbert/ADIOS-UsersManual-1.13.1.pdf
https://github.com/ornladios/ADIOS/issues/212

openPMD-api Documentation, Release 0.13.0

6.3.5 Selected References

e Hasan Abbasi, Matthew Wolf, Greg Eisenhauer, Scott Klasky, Karsten Schwan, and Fang Zheng.
Datastager: scalable data staging services for petascale applications, Cluster Computing, 13(3):277-290,
2010. DOI:10.1007/s10586-010-0135-6

 Ciprian Docan, Manish Parashar, and Scott Klasky. DataSpaces: An interaction and coordination frame-
work or coupled simulation workflows, In Proc. of 19th International Symposium on High Performance and
Distributed Computing (HPDC’10), June 2010. DOI:10.1007/s10586-011-0162-y

e Qing Liu, Jeremy Logan, Yuan Tian, Hasan Abbasi, Norbert Podhorszki, Jong Youl Choi, Scott Klasky,
Roselyne Tchoua, Jay Lofstead, Ron Oldfield, Manish Parashar, Nagiza Samatova, Karsten Schwan, Arie
Shoshani, Matthew Wolf, Kesheng Wu, and Weikuan Yu. Hello ADIOS: the challenges and lessons of
developing leadership class I/O frameworks, Concurrency and Computation: Practice and Experience,
26(7):1453-1473, 2014. DOI:10.1002/cpe.3125

* Robert McLay, Doug James, Si Liu, John Cazes, and William Barth. A user-friendly approach for tuning
parallel file operations, In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC*14, pages 229-236, IEEE Press, 2014. DOI:10.1109/SC.2014.24

* Axel Huebl, Rene Widera, Felix Schmitt, Alexander Matthes, Norbert Podhorszki, Jong Youl Choi, Scott
Klasky, and Michael Bussmann. On the Scalability of Data Reduction Techniques in Current and Upcoming
HPC Systems from an Application Perspective, ISC High Performance 2017: High Performance Computing,
pp- 15-29, 2017. arXiv:1706.00522, DOI:10.1007/978-3-319-67630-2_2

6.4 ADIOS2

openPMD supports writing to and reading from ADIOS2 . bp files. For this, the installed copy of openPMD must
have been built with support for the ADIOS2 backend. To build openPMD with support for ADIOS2, use the
CMake option ~-DopenPMD_USE_ADIOS2=0N. For further information, check out the installation guide, build
dependencies and the build options.

6.4.1 1/0 Method

ADIOS2 has several engines for alternative file formats and other kinds of backends, yet natively writes to .bp
files. The openPMD API uses the BP4 engine as the default file engine and the SST engine for streaming support.
We currently leverage the default ADIOS?2 transport parameters, i.e. POSIX on Unix systems and FStream on
Windows.

6.4.2 Steps

ADIOS?2 is optimized towards organizing the process of reading/writing data into IO steps. In order to activate
steps, it is imperative to use the Streaming API (which can be used for either file-based or streaming-based work-
flows). With ADIOS?2 release 2.6.0 containing a bug (fixed in development versions, see PR #2348) that disallows
random-accessing steps in file-based engines, step-based processing must currently be opted in to via use of the
JSON parameter adios2.engine.usesteps = true when using a file-based engine such as BP3 or BP4.
With these ADIOS2 releases, files written in such a way may only be read using the streaming API. Upon reading
a file, the ADIOS2 backend will automatically recognize whether it has been written with or without steps, ig-
noring the JSON option mentioned above. Steps are mandatory for streaming-based engines and trying to switch
them off will result in a runtime error.

Note: ADIOS2 will in general dump data to disk/transport only upon closing a file/engine or a step. If not
using steps, users are hence strongly encouraged to use file-based iteration layout (by creating a Series with a
filename pattern such as simData_%06T.bp) and enforce dumping to disk by Tteration: :close ()-ing
an iteration after writing to it. Otherwise, out-of-memory errors are likely to occur.

6.4. ADIOS2 79

https://doi.org/10.1007/s10586-010-0135-6
https://doi.org/10.1007/s10586-011-0162-y
https://doi.org/10.1002/cpe.3125
https://doi.org/10.1109/SC.2014.24
https://arxiv.org/abs/1706.00522
https://doi.org/10.1007/978-3-319-67630-2_2
https://github.com/ornladios/ADIOS2/pull/2348

openPMD-api Documentation, Release 0.13.0

6.4.3 Backend-Specific Controls

The ADIOS?2 SST engine for streaming can be picked by specifying the ending . sst instead of . bp.

The following environment variables control ADIOS2 I/O behavior at runtime. Fine-tuning these is especially
useful when running at large scale.

environment variable de- description
fault
OPENPMD_ADIOS2_HAVE_PROFILING Turns on/off profiling information right after a run.
OPENPMD_ADIOS2_HAVE_METADATALIFILE | Online creation of the adios journal file (1: yes, 0: no).
OPENPMD_ADIOS2_NUM_SUBSTREAMS Number of files to be created, O indicates maximum num-
ber possible.
OPENPMD_ADIOS2_ENGINE File ADIOS2 engine
OPENPMD_BP_BACKEND ADIOSZ Chose preferred .bp file backend if ADIOS1 and
ADIOQS?2 are available.

Please refer to the ADIOS2 documentation for details on I/O tuning.

In case the ADIOS2 backend was not compiled but only the deprecated ADIOSI backend, the default of
OPENPMD_BP_BACKEND will fall back to ADIOS1. Be advised that ADIOS1 only supports .Dbp files up to
the internal version BP3, while ADIOS2 supports BP3, BP4 and later formats.

Notice that the ADIOS?2 backend is alternatively configurable via JSON parameters.

Due to performance considerations, the ADIOS2 backend configures ADIOS2 not to compute any dataset statis-
tics (Min/Max) by default. Statistics may be activated by setting the JSON parameter adios2.engine.
parameters.StatsLevel = "1".

6.4.4 Best Practice at Large Scale

A good practice at scale is to disable the online creation of the metadata file. After writing the data, run bpmeta
on the (to-be-created) filename to generate the metadata file offline (repeat per iteration for file-based encoding).
This metadata file is needed for reading, while the actual heavy data resides in <metadata filename>.dir/
directories. Note that such a tool is not yet available for ADIOS2, but the bpmet a utility provided by ADIOS1 is
capable of processing files written by ADIOS2.

Further options depend heavily on filesystem type, specific file striping, network infrastructure and available RAM
on the aggregator nodes. A good number for substreams is usually the number of contributing nodes divided by
four.

For fine-tuning at extreme scale or for exotic systems, please refer to the ADIOS2 manual and talk to your filesys-
tem admins and the ADIOS?2 authors. Be aware that extreme-scale I/O is a research topic after all.

6.4.5 Selected References

e Hasan Abbasi, Matthew Wolf, Greg Eisenhauer, Scott Klasky, Karsten Schwan, and Fang Zheng.
Datastager: scalable data staging services for petascale applications, Cluster Computing, 13(3):277-290,
2010. DOI:10.1007/s10586-010-0135-6

 Ciprian Docan, Manish Parashar, and Scott Klasky. DataSpaces: An interaction and coordination frame-
work or coupled simulation workflows, In Proc. of 19th International Symposium on High Performance and
Distributed Computing (HPDC’10), June 2010. DOI:10.1007/s10586-011-0162-y

* Qing Liu, Jeremy Logan, Yuan Tian, Hasan Abbasi, Norbert Podhorszki, Jong Youl Choi, Scott Klasky,
Roselyne Tchoua, Jay Lofstead, Ron Oldfield, Manish Parashar, Nagiza Samatova, Karsten Schwan, Arie
Shoshani, Matthew Wolf, Kesheng Wu, and Weikuan Yu. Hello ADIOS: the challenges and lessons of
developing leadership class I/O frameworks, Concurrency and Computation: Practice and Experience,
26(7):1453-1473, 2014. DOI:10.1002/cpe.3125

80 Chapter 6. Backends

https://adios2.readthedocs.io/en/latest/engines/engines.html
https://adios2.readthedocs.io/en/latest/engines/engines.html
https://doi.org/10.1007/s10586-010-0135-6
https://doi.org/10.1007/s10586-011-0162-y
https://doi.org/10.1002/cpe.3125

openPMD-api Documentation, Release 0.13.0

* Robert McLay, Doug James, Si Liu, John Cazes, and William Barth. A user-friendly approach for tuning
parallel file operations, In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC*14, pages 229-236, IEEE Press, 2014. DOI:10.1109/SC.2014.24

¢ Axel Huebl, Rene Widera, Felix Schmitt, Alexander Matthes, Norbert Podhorszki, Jong Youl Choi, Scott
Klasky, and Michael Bussmann. On the Scalability of Data Reduction Techniques in Current and Upcoming
HPC Systems from an Application Perspective, ISC High Performance 2017: High Performance Computing,
pp- 15-29, 2017. arXiv:1706.00522, DOI:10.1007/978-3-319-67630-2_2

6.5 HDF5

openPMD supports writing to and reading from HDFS . h5 files. For this, the installed copy of openPMD must
have been built with support for the HDFS backend. To build openPMD with support for HDFS5, use the CMake
option —-DopenPMD_USE_HDF 5=0N. For further information, check out the installation guide, build dependen-
cies and the build options.

6.5.1 1/0 Method

HDFS5 internally either writes serially, via POSIX on Unix systems, or parallel to a single logical file via MPI-1/O.

6.5.2 Backend-Specific Controls

The following environment variables control HDF5 I/O behavior at runtime.

environment variable de- description
fault
OPENPMD_HDF5_INDEPENDENT | Sets the MPI-parallel transfer mode to collective (OFF) or independent
(ON).

OPENPMD_HDF5_ALIGNMENT Tuning parameter for parallel I/O, choose an alignment which is a mul-
tiple of the disk block size.
H5_COLL_API_SANITY_|CHBEK | Setto 1 toperform an MPI_Barrier inside each meta-data operation.

OPENPMD_HDF5_INDEPENDENT: by default, we implement MPI-parallel data storeChunk (write) and
loadChunk (read) calls as none-collective MPI operations. Attribute writes are always collective in parallel
HDFS5. Although we choose the default to be non-collective (independent) for ease of use, be advised that perfor-
mance penalties may occur, although this depends heavily on the use-case. For independent parallel I/O, poten-
tially prefer using a modern version of the MPICH implementation (especially, use ROMIO instead of OpenMPI’s
ompio implementation). Please refer to the HDF5 manual, function H5Pset_dxpl_mpio for more details.

OPENPMD_HDF5_ALIGNMENT This sets the alignment in Bytes for writes via the H5Pset_alignment func-
tion. According to the HDF5 documentation: For MPI IO and other parallel systems, choose an alignment which
is a multiple of the disk block size. On Lustre filesystems, according to the NERSC documentation, it is advised
to set this to the Lustre stripe size. In addition, ORNL Summit GPFS users are recommended to set the alignment
value to 16777216(16MB).

H5_COLL_API_SANITY_CHECK: this is a HDFS5 control option for debugging parallel I/O logic (API calls).
Debugging a parallel program with that option enabled can help to spot bugs such as collective MPI-calls that are
not called by all participating MPI ranks. Do not use in production, this will slow parallel I/O operations down.

6.5. HDF5 81

https://doi.org/10.1109/SC.2014.24
https://arxiv.org/abs/1706.00522
https://doi.org/10.1007/978-3-319-67630-2_2
https://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node87.htm#Node87
https://support.hdfgroup.org/HDF5/doc/RM/H5P/H5Pset_dxpl_mpio.htm
https://support.hdfgroup.org/HDF5/doc/RM/H5P/H5Pset_alignment.htm
https://www.nersc.gov/users/training/online-tutorials/introduction-to-scientific-i-o/?start=5

openPMD-api Documentation, Release 0.13.0

6.5.3 Selected References

e GitHub issue #554

* Axel Huebl, Rene Widera, Felix Schmitt, Alexander Matthes, Norbert Podhorszki, Jong Youl Choi, Scott
Klasky, and Michael Bussmann. On the Scalability of Data Reduction Techniques in Current and Upcoming
HPC Systems from an Application Perspective, ISC High Performance 2017: High Performance Computing,
pp. 15-29, 2017. arXiv:1706.00522, DOI:10.1007/978-3-319-67630-2_2

82 Chapter 6. Backends

https://github.com/openPMD/openPMD-api/pull/554
https://arxiv.org/abs/1706.00522
https://doi.org/10.1007/978-3-319-67630-2_2

CHAPTER
SEVEN

DEVELOPMENT

7.1 Contribution Guide

7.1.1 GitHub

The best starting point is the GitHub issue tracker.

For existing tasks, the labels good first issue and help wanted are great for contributions. In case you want to start
working on one of those, just comment in it first so no work is duplicated.

New contributions in form of pull requests always need to go in the dev (development) branch. The master
branch contains the last stable release and receives updates only when a new version is drafted.

Maintainers organize prioritites and progress in the projects tab.

7.1.2 Style Guide

For coding style, please try to follow the guides in ComputationalRadiationPhysics/contributing for new code.

7.2 Repository Structure

7.2.1 Branches

* master: the latest stable release, always tagged with a version
* dev: the development branch where all features start from and are merged to

* release-X.Y.Z: release candidate for version X.Y.Z with an upcoming release, receives updates for
bug fixes and documentation such as change logs but usually no new features

7.2.2 Directory Structure

e include/

C++ header files

set —I here

prefixed with project name
- auxiliary/

* internal auxiliary functionality

helper/, benchmark/

user-facing helper functionality

83

https://github.com/openPMD/openPMD-api/issues
https://github.com/openPMD/openPMD-api/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://github.com/openPMD/openPMD-api/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22
https://help.github.com/articles/about-pull-requests/
https://github.com/openPMD/openPMD-api/projects
https://github.com/ComputationalRadiationPhysics/contributing

openPMD-api Documentation, Release 0.13.0

e src/
— C++ source files
- cli/
user-facing command line tools
e 1ib/
- python/
+ modules, e.g. additional python interfaces and helpers
* set PYTHONPATH here
* examples/
— read and write examples
e samples/

— example files; need to be added manually with: share/openPMD/download_samples.sh (or
.psl)

* share/openPMD/
— download scripts for example files
- cmake/
* cmake scripts
— thirdParty/
included third party software
* test/
— unit tests which are run with ctest (make test)
e .github/
— GitHub issue/pull request templates
— workflows/
GitHub Action scripts for continuous integration checks
- ci/
% service-agnostic configurations for continuous integration
* docs/

— documentation files

7.3 Design Overview

Note: This section is a stub. Please open a pull-request to improve it or open an issue with open questions.

This library consists of three conceptual parts:
* The backend, concerned with elementary low-level I/O operations.
* The I/O-Queue, acting as a communication mechanism and buffer between the other two parts.

* The user-facing frontend, enforcing the openPMD standard, keeping a logical state of the data, and syn-
chronizing that state with persistent data by scheduling I/O-Tasks.

84 Chapter 7. Development

openPMD-api Documentation, Release 0.13.0

7.3.1 Backend

One of the main goals of this library is to provide a high-level common interface to synchronize persistent data
with a volatile representation in memory. This includes handling data in any number of supported file formats
transparently. Therefore, enabling users to handle hierarchical, self-describing file formats while disregarding
the actual nitty-gritty details of just those file formats, required the reduction of possible operations reduced to a
common set of [OTasks:

CLOSE_PATH,
OPEN_PATH,
DELETE_PATH,
LIST_PATHS,

CREATE_DATASET,
EXTEND_DATASET,
OPEN_DATASET,
DELETE_DATASET,
WRITE_DATASET,
READ_DATASET,
LIST_DATASETS,

DELETE_ATT,
WRITE_ATT,
READ_ATT,
LIST_ATTS,

ADVANCE,
AVAILABLE_CHUNKS //!< Query chunks that can be loaded in a dataset
}; // Operation

struct OPENPMDAPI_ EXPORT AbstractParameter

Every task is designed to be a fully self-contained description of one such atomic operation. By describing a
required minimal step of work (without any side-effect), these operations are the foundation of the unified handling
mechanism across suitable file formats. The actual low-level exchange of data is implemented in IOHandlers,
one per file format (possibly two if handlingi MPI-parallel work is possible and requires different behaviour). The
only task of these IOHandlers is to execute one atomic IOTask at a time. Ideally, additional logic is contained
to improve performance by keeping track of open file handles, deferring and coalescing parts of work, avoiding
redundant operations. It should be noted that while this is desirable, sequential consistency must be guaranteed
(see I/0-Queue.)

Note this paragraph is a stub: AbstractParameter and subclasses as typesafe descriptions of task param-
eters, Writable as unique identification in task, corresponding to node in frontend hierarchy (tree-like struc-
ture), subclass of AbstractIOHandler to ensure simple extensibilty, and only two public interface meth-
ods (enqueue () and £lush ()) to hide separate behaviour & state AbstractFilePosition as a format-
dependent location inside persistent data (e.g. node-id / path string) should be entirely agnostic to openPMD and
just treat transferred data as raw bytes without knowledge

7.3.2 1/0-Queue

To keep coupling between openPMD logic and actual low-level I/O to a minimum, a sequence of atomic I/O-
Tasks is used to transfer data between logical and physical representation. Individual tasks are scheduled by
frontend application logic and stored in a data structure that allows for FIFO order processing (in future releases,
this order might be relaxed). Tasks are not executed during their creation, but are instead buffered in this queue.
Disk accesses can be coalesced and high access latencies can be amortized by performing multiple tasks bunched
together. At appropriate points in time, the used backend processes all pending tasks (strict, single-threaded,
synchronous FIFO is currently used in all backends, but is not mandatory as long as consistency with that order
can be guaranteed).

A typical sequence of tasks that are scheduled during the read of an existing file could look something like this:

7.3. Design Overview 85

https://github.com/openPMD/openPMD-api/blob/dev/include/openPMD/IO/IOTask.hpp

openPMD-api Documentation, Release 0.13.0

1 OPEN_FILE

2. READ_ATT // 'openPMD'

3. READ_ATT // 'openPMDextension'

4. READ_ATT // 'basePath'

PROCESS ELEMENTS

5. LIST_ATTS // in '/

PROCESS ELEMENTS

5.1 READ_ATT // 'meshesPath', if in 5.
5.2 READ_ATT // 'particlesPath', if in 5.
PROCESS ELEMENTS

6. OPEN_PATH // 'basePath'

7. LIST_ATTS // in 'basePath'

PROCESS ELEMENTS

7.X READ_ATT // every 'att' in 7.

8. LIST_PATHS // in 'basePath'

PROCESS ELEMENTS

9.X OPEN_PATH // every 'path' in 8.

Note that (especially for reading), pending tasks might have to be processed between any two steps to guarantee
data consistency. That is because action might have to be taken conditionally on read or written values, openPMD
conformity checked to fail fast, or a processing of the tasks be requested by the user explicitly.

As such, FIFO-equivalence with the scheduling order must be satisfied. A task that is not located at the head of the
queue (i.e. does not have the earliest schedule time of all pending tasks) is not guaranteed to succeed in isolation.
Currently, this can only guaranteed by sequentially performing all tasks scheduled prior to it in chronological
order. To give two examples where this matters:

* Reading value chunks from a dataset only works after the dataset has been opened. Due to limitations
in some of the backends and the atomic nature of the I/O-tasks in this API (i.e. operations without side
effects), datatype and extent of a dataset are only obtained by opening the dataset. For some backends this
information is required for chunk reading and thus must be known prior to performing the read.

¢ Consecutive chunk writing and reading (to the same dataset) mirrors classical RAW data dependence.
The two chunks might overlap, in which case the read has to reflect the value changes introduced by
the write.

Atomic operations contained in this queue are . ..

7.3.3 Frontend

While the other two components are primarily concerned with actual I/O, this one is the glue and constraint logic
that lets a user build the in-memory view of the hierarchical file structure. Public interfaces should be limited to
this part (exceptions may arise, e.g. format-dependent dataset parameters). Where the other parts contain virtually
zero knowledge about openPMD, this one contains all of it and none of the low-level I/O.

Writable (mixin) base class of every front-end class, used to tree structure used in backend
Attributable (mixin) class that allows attaching meta-data to tree nodes (openPMD attributes)
Attribute a variadic datastore for attributes supported across backends
Container serves two purposes

* python-esque access inside hierarchy groups (foo[“bar’][*baz”])

 only way for user to construct objects (private constructors), forces them into the correct hierarchy (no
dangling objects)

all meta-data access stores in the Attributable part of an object and follows the syntax

Object& setFoo (Foo foo);
Foo foo () const;

86 Chapter 7. Development

openPMD-api Documentation, Release 0.13.0

(future work: use CRTP)

Series as root of every hierarchy, supporting groupBased and fileBased transparently ...

7.4 How to Write a Backend

Adding support for additional types of file storage or data transportation is possible by creating a backend. Back-
end design has been kept independent of the openPMD-specific logic that maintains all constraints within a file.
This should allow easy introduction of new file formats with only little knowledge about the rest of the system.

7.4.1 File Formats

To get started, you should create a new file format in include/openPMD/I0O/Format . hpp representing the
new backend. Note that this enumeration value will never be seen by users of openPMD-api, but should be kept
short and concise to improve readability.

enum class Format

{
JSON

}i

In order to use the file format through the API, you need to provide unique and characteristic filename extensions
that are associated with it. This happens in src/Series.cpp:

Format
determineFormat (std::string consts filename)
{
if(auxiliary::ends_with(filename, ".Jjson"))
return Format: :JSON;

std::string
cleanFilename (std::string consts filename, Format f)
{
switch(£)
{
case Format::JSON:
return auxiliary::replace_last (filename, ".json", "");

std::function< bool (std::string consts) >
matcher (std::string const& name, Format f)
{

switch(f)

{

case Format::JS

{

std: :regex pattern(auxiliary::replace_last (name + ".Jjson$", "ST",
<" [[:digit:]11+"));
return [pattern] (std::string consts& filename) -> bool { return

—std::regex_search(filename, pattern); };

}

Unless your file format imposes additional restrictions to the openPMD constraints, this is all you have to do in
the frontend section of the API.

7.4. How to Write a Backend 87

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

openPMD-api Documentation, Release 0.13.0

7.4.2 10 Handler

Now that the user can specify that the new backend is to be used, a concrete mechanism for handling IO inter-
actions is required. We call this an TOHandler. It is not concerned with any logic or constraints enforced by

openPMD, but merely offers a small set of elementary IO operations.

On the very basic level, you will need to derive a class from Abstract IOHandler:

/+ file: include/openPMD/I0/JSON/JSONIOHandler.hpp #*/
#include "openPMD/IO/AbstractIOHandler.hpp"

namespace openPMD

{

class JSONIOHandler : public AbstractIOHandler

{

public:
JSONIOHandler (std::string consté& path, Access);
virtual ~JSONIOHandler ();

std::future< void > flush () override;

}
} // openPMD

/+ file: src/IO/JSON/JSONIOHandler.cpp */
#include "openPMD/IO/JSON/JSONIOHandler.hpp"

namespace openPMD

{

JSONIOHandler: :JSONIOHandler (std::string const& path, Access at)
AbstractIOHandler (path, at)

JSONIOHandler: :~JSONIOHandler ()
{1}

std: : future< void >
JSONIOHandler: :flush ()

{ return std::future< void >(); }
} // openPMD

Familiarizing your backend with the rest of the API happens in just one place in src/IO/
AbstractIOHandlerHelper.cpp:
#1f openPMD _ HAVE_MPT
std: :shared_ptr< AbstractIOHandler >
createIOHandler (
std::string consté& path,
Access at,
Format f£f,
MPI_Comm comm
)
{
switch(f)
{
case Format::JSON:
std::cerr << "No MPI-aware JSON backend available. "
"Falling back to the serial backend! "
"Possible failure and degraded performance!" << std::endl;

return std::make_shared< JSONIOHandler > (path, at);

f—

(continues on next page)

88 Chapter 7. Development

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

std::shared_ptr< AbstractIOHandler >
createIOHandler (

std::string consté& path,

Access at,

Format f

switch(£)
{
case Format::JSON:
return std::make_shared< JSONIOHandler > (path, at);

In this state, the backend will do no IO operations and just act as a dummy that ignores all queries.

7.4.3 10 Task Queue

Operations between the logical representation in this API and physical storage are funneled through a queue
m_work that is contained in the newly created IOHandler. Contained in this queue are IOTask s that
have to be processed in FIFO order (unless you can prove sequential execution guarantees for out-of-order
execution) when AbstractIOHandler::flush () is called. A recommended skeleton is provided in
AbstractIOHandlerImpl. Note that emptying the queue this way is not required and might not fit your
IO scheme.

Using the provided skeleton involves
¢ deriving an IOHandlerImpl for your IOHandler and
¢ delegating all flush calls to the IOHandlerImpl:

/+ file: include/openPMD/I0/JSON/JSONIOHandlerImpl.hpp */
#include "openPMD/IO/AbstractIOHandlerImpl.hpp"

namespace openPMD
{
class JSONIOHandlerImpl : public AbstractIOHandlerImpl
{
public:
JSONIOHandlerImpl (AbstractIOHandlerx) ;
virtual ~JSONIOHandlerImpl ();

void createFile(Writablex, Parameter< Operation::CREATE_FILE > consts)
—override;

void createPath (Writablex, Parameter< Operation::CREATE_PATH > consts&)
—override;

void createDataset (Writablex, Parameter< Operation::CREATE_DATASET > const&)
—override;

void extendDataset (Writablex, Parameter< Operation::EXTEND_DATASET > const&)
—override;

void openFile (Writablex, Parameter< Operation::OPEN_FILE > const&) override;

void openPath (Writablex, Parameter< Operation::OPEN_PATH > const&) override;

void openDataset (Writablex, Parameter< Operation::OPEN_DATASET > &) override;

void deleteFile (Writablex, Parameter< Operation::DELETE_FILE > consts&)
—override;

void deletePath (Writablex, Parameter< Operation::DELETE_PATH > consts&)
—override;

void deleteDataset (Writablex, Parameter< Operation::DELETE_DATASET > const&)
—override;

(continues on next page)

7.4. How to Write a Backend 89

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

void deleteAttribute (Writable*, Parameter< Operation::DELETE_ATT > const&)

—override;

void writeDataset (Writablex, Parameter< Operation::WRITE_DATASET > constég)
—override;

void writeAttribute (Writablex, Parameter< Operation::WRITE_ATT > const&)
—override;

void readDataset (Writablex, Parameter< Operation::READ_DATASET > &) override;
void readAttribute (Writablex, Parameter< Operation::READ_ATT > &) override;
void listPaths (Writablex, Parameter< Operation::LIST_PATHS > &) override;
void listDatasets (Writablex, Parameter< Operation::LIST_DATASETS > &) override;
void listAttributes (Writablex, Parameter< Operation::LIST_ATTS > &) override;

}

} // openPMD

/+ file: include/openPMD/I0/JSON/JSONIOHandler.hpp */
#include "openPMD/IO/AbstractIOHandler.hpp"
#include "openPMD/IO/JSON/JSONIOHandlerImpl.hpp"

namespace openPMD
{
class JSONIOHandler : public AbstractIOHandler
{
public:
SE . A/
private:
JSONIOHandlerImpl m_impl;
}
} // openPMD

/* file: src/I0/JSON/JSONIOHandler.cpp */
#include "openPMD/IO/JSON/JSONIOHandler.hpp"

namespace openPMD
{
Sre . k)
std: :future< void >
JSONIOHandler: :flush ()
{
return m_impl->flush();
}
} // openPMD

Each IOTask contains a pointer to a Writable that corresponds to one object in the openPMD hierarchy. This
object may be a group or a dataset. When processing certain types of [OTasks in the queue, you will have to assign
unique FilePositions to these objects to identify the logical object in your physical storage. For this, you need to
derive a concrete FilePosition for your backend from AbstractFilePosition. There is no requirement on
how to identify your objects, but ids from your IO library and positional strings are good candidates.

/+ file: include/openPMD/I0/JSON/JSONFilePosition.hpp =*/
#include "openPMD/IO/AbstractFilePosition.hpp"

namespace openPMD
{
struct JSONFilePosition : public AbstractFilePosition
{
JSONFilePosition (uint64_t id)
id{id}

uint64_t id;

(continues on next page)

90 Chapter 7. Development

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

}i
} // openPMD

From this point, all that is left to do is implement the elementary IO operations provided in the IOHandlerImpl.
The Parameter structs contain both input parameters (from storage to API) and output parameters (from API
to storage). The easy way to distinguish between the two parameter sets is their C++ type: Input parameters
are std: :shared_ptr s that allow you to pass the requested data to their destination. Output parameters are
all objects that are not std: :shared_ptr s. The contract of each function call is outlined in include/

openPMD/I0/AbstractIOHandlerImpl.

/* file: src/IO/JSON/JSONIOHandlerImpl.cpp #*/
#include "openPMD/IO/JSONIOHandlerImpl.hpp"

namespace openPMD
{
void
JSONIOHandlerImpl: :createFile (Writablex writable,
Parameter< Operation::CREATE_FILE > consté&,
—parameters)
{
if(!'writable->written)
{
path dir (m_handler->directory);
if('exists(dir))
create_directories (dir);

std::string name = m_handler->directory + parameters.name;
if(lauxiliary::ends_with (name, ".json"))
name += ".Json";

uint64_t id = /x...x/
VERIFY (id >= 0, "Internal error: Failed to create JSON file");

writable->written = true;
writable->abstractFilePosition = std::make_shared< JSONFilePosition > (id);

}
VE Y
} // openPMD

Note that you might have to keep track of open file handles if they have to be closed explicitly during destruction
of the IOHandlerImpl (prominent in C-style frameworks).

7.5 Build Dependencies

openPMD-api depends on a series of third-party projects. These are currently:

7.5. Build Dependencies 91

openPMD-api Documentation, Release 0.13.0

7.5.1 Required

* CMake 3.15.0+
e C++14 capable compiler, e.g. g++ 5.0+, clang 5.0+, VS 2017+

7.5.2 Shipped internally

The following libraries are shipped internally in share/openPMD/thirdParty/ for convenience:
e MPark.Variant 1.4.0+ (BSL-1.0)
e Catch2 2.6.1+ (BSL-1.0)
e pybindl1 2.6.1+ (new BSD)
¢ NLohmann-JSON 3.9.1+ (MIT)

7.5.3 Optional: I/0 backends

* JSON

HDF5 1.8.13+
ADIOSI1 1.13.1+
ADIOS2 2.6.0+

while those can be build either with or without:

e MPI 2.1+, e.g. OpenMPI 1.6.5+ or MPICH2

7.5.4 Optional: language bindings

* Python:
— Python 3.6-3.9
— pybindl1 2.6.1+
— numpy 1.15+
— mpidpy 2.1+

7.5.5 Quick Install with Spack

Quickly install all dependencies with a Spack anonymous environment. Go in the base directory and type:

spack env activate -d .
spack install

92 Chapter 7. Development

https://github.com/mpark/variant
https://github.com/mpark/variant/blob/master/LICENSE.md
https://github.com/catchorg/Catch2
https://github.com/catchorg/Catch2/blob/master/LICENSE.txt
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11/blob/master/LICENSE
https://github.com/nlohmann/json
https://github.com/nlohmann/json/blob/develop/LICENSE.MIT
https://en.wikipedia.org/wiki/JSON
https://support.hdfgroup.org/HDF5
https://www.olcf.ornl.gov/center-projects/adios
https://github.com/ornladios/ADIOS2
https://spack.readthedocs.io/en/latest/environments.html#anonymous-environments

openPMD-api Documentation, Release 0.13.0

7.6 Build Options

7.6.1 Variants

The following options can be added to the cmake call to control features. CMake controls options with prefixed
-D,e.g. -DopenPMD_USE_MPI=0FF:

CMake Option Values Description
openPMD_USE_MPI AUTO/ON/OFF Parallel, Multi-Node I/O for clusters
openPMD_USE_HDF5 AUTO/ON/OFF HDF5 backend (. h5 files)
openPMD_USE_ADIOS1 AUTO/ON/OFF ADIOS1 backend (. bp files up to version BP3)
openPMD_USE_ADIOS2 AUTO/ON/OFF ADIOS?2 backend (. bp files in BP3, BP4 or higher)
openPMD_USE_PYTHON AUTO/ON/OFF Enable Python bindings
openPMD_USE_INVASIVE_TESON/OFF Enable unit tests that modify source code I
openPMD_USE_VERIFY ON/OFF Enable internal VERIFY (assert) macro independent of
build type 2

openPMD_INSTALL ON/OFF Add installation targets
Python_EXECUTABLE (newest Path to Python executable

found)

!"e.g. changes C++ visibility keywords, breaks MSVC

2 this includes most pre-/post-condition checks, disabling without specific cause is highly discouraged

7.6.2 Shared or Static

By default, we will build as a shared library and install also its headers. You can only build a static
(LibopenPMD.a or openPMD.lib) or a shared library (libopenPMD.so or openPMD.dylib or
openPMD.d11) at a time.

The following options switch between static and shared builds and control if dependencies are linked dynamically
or statically:

CMake Option Values Description
BUILD_SHARED_LIBS ON/OFF | Build the C++ API as shared library
HDF5_USE_STATIC_LIBRARIES | ON/OFF | Require static HDFS5 library
ADIOS_USE_STATIC_LIBS ON/OFF | Require static ADIOS1 library

Note that python modules (openpmd_api.cpython. [...].so or openpmd_api.pyd) are always dy-
namic libraries. Therefore, if you want to build the python module and prefer static dependencies, make sure to
provide all of dependencies build with position independent code (-£PIC). The same requirement is true if you
want to build a shared C++ API library with static dependencies.

7.6.3 Debug

By default, the Release version is built. In order to build with debug symbols, pass
—-DCMAKE_BUILD_TYPE=Debug to your cmake command.

7.6. Build Options 93

openPMD-api Documentation, Release 0.13.0

7.6.4 Shipped Dependencies

Additionally, the following libraries are shipped internally for convenience. These might get installed in your
CMAKE_INSTALL_PREFIX if the option is ON.

The following options allow to switch to external installs of dependencies:

CMake Option Values Installs | Library Version
openPMD_USE_INTERNAL_VARIANT ON/OFF | Yes MPark. Variant 1.4.0+
openPMD_USE_INTERNAL_CATCH ON/OFF | No Catch2 2.6.1+
openPMD_USE_INTERNAL_PYBIND11 | ON/OFF | No pybind11 2.6.1+
openPMD_USE_INTERNAL_JSON ON/OFF | No NLohmann-JSON | 3.9.1+

7.6.5 Tests, Examples and Command Line Tools

By default, tests, examples and command line tools are built. In order to skip building those, pass
—-DBUILD_TESTING=OFF, —-DBUILD_EXAMPLES=OFF, or —-DBUILD_CLI_TOOLS=OFF to your cmake
command.

7.7 Sphinx

In the following section we explain how to contribute to this documentation.

If you are reading the HTML version on http://openPMD-api.readthedocs.io and want to improve or correct exist-
ing pages, check the “Edit on GitHub” link on the right upper corner of each document.

Alternatively, go to docs/source in our source code and follow the directory structure of reStructuredText (.
rst) files there. For intrusive changes, like structural changes to chapters, please open an issue to discuss them
beforehand.

7.7.1 Build Locally

This document is build based on free open-source software, namely Sphinx, Doxygen (C++ APIs as XML) and
Breathe (to include doxygen XML in Sphinx). A web-version is hosted on ReadTheDocs.

The following requirements need to be installed (once) to build our documentation successfully:

cd docs/

doxygen is not shipped via pip, install it externally,
from the homepage, your package manager, conda, etc.

example:

sudo apt-get install doxygen graphviz

python tools & style theme
python -m pip install -r requirements.txt # —-user

With all documentation-related software successfully installed, just run the following commands to build your
docs locally. Please check your documentation build is successful and renders as you expected before opening a
pull request!

skip this if you are still in docs/

cd docs/

render the ".rst' files and replace their macros within

enjoy the breathe errors on things it does not understand from doxygen :)
make html

(continues on next page)

94 Chapter 7. Development

http://openPMD-api.readthedocs.io
http://www.sphinx-doc.org/en/stable/rest.html
https://github.com/sphinx-doc/sphinx
http://doxygen.org
https://github.com/michaeljones/breathe
https://readthedocs.org/

openPMD-api Documentation, Release 0.13.0

(continued from previous page)

open it, e.g. with firefox :)
firefox build/html/index.html

now again for the pdf :)
make latexpdf

open it, e.g. with okular
build/latex/openPMD-api.pdf

7.7.2 Useful Links

* A primer on writing restFUL files for sphinx
e Why You Shouldn’t Use “Markdown” for Documentation

* Markdown Limitations in Sphinx

7.7. Sphinx

95

http://www.sphinx-doc.org/en/stable/rest.html
http://ericholscher.com/blog/2016/mar/15/dont-use-markdown-for-technical-docs/
https://docs.readthedocs.io/en/latest/getting_started.html#in-markdown

openPMD-api Documentation, Release 0.13.0

96 Chapter 7. Development

CHAPTER
EIGHT

MAINTENANCE

8.1 Release Channels

8.1.1 Spack

Our recommended HPC release channel when in need for MPI. Also very useful for Linux and OSX desktop
releases. Supports all variants of openPMD-api via flexible user-level controls. The same install workflow used to
bundle this release also comes in handy to test a development version quickly with power-users.

Example workflow for a new release:
* https://github.com/spack/spack/pull/14018

Please ping @ax3l in your pull-request.

8.1.2 Conda-Forge

Our primary release channel for desktops via a fully automated binary distribution. Provides the C++ and Python
API for users. Supports Windows, OSX, and Linux. Packages are built with and without MPI, the latter is the
default variant.

Example workflow for a new release:

* https://github.com/conda-forge/openpmd-api-feedstock/pull/41

8.1.3 Brew

We maintain a homebrew tap for openPMD. Provides the C++ and Python API for users. Supports OSX and
Linux. Its source-only Formula for the latest release includes (Open)MPI support and lacks the ADIOS1 backend.

Example workflow for a new release:

¢ https://github.com/openPMD/homebrew-openPMD/commit/839c458f1e8fa2a40ad0b4fd7d0d239d1062{867

8.1.4 PyPI

Our PyPI release provides our Python bindings in a self-contained way, without providing access to the C++ APIL.
On PyPI, we upload a source package with all build-variants to default (AUTO), but MPI (OFF) unless activated.
Furthermore, we build portable, serial (non-MPI) binary wheels for Linux (manylinux2010) and macOS (10.9+).

The deployment of our binary wheels is automated via cibuildwheel. Update the version number with a new git
tag in the wheels branch to trigger an automated deployment to pypi.org/project/openPMD-api . A push (merge)
to this branch will build and upload all wheels together with the source distribution through twine.

The same pip install workflow used to bundle this release also comes in handy to test a development version
quickly with power-users.

97

https://github.com/spack/spack/pull/14018
https://github.com/conda-forge/openpmd-api-feedstock/pull/41
https://docs.brew.sh/How-to-Create-and-Maintain-a-Tap
https://github.com/openPMD/homebrew-openPMD
https://github.com/openPMD/homebrew-openPMD/commit/839c458f1e8fa2a40ad0b4fd7d0d239d1062f867
https://github.com/pypa/manylinux
https://github.com/joerick/cibuildwheel
https://github.com/openPMD/openPMD-api/blob/136f2363afcd95541d2a6edb343164caa6b530dd/.github/workflows/build.yml#L17
https://pypi.org/project/openPMD-api
https://github.com/openPMD/openPMD-api/blob/55f22a82e66ca66868704a3e0827c562ae669ff8/azure-pipelines.yml#L211-L212
https://github.com/openPMD/openPMD-api/blob/55f22a82e66ca66868704a3e0827c562ae669ff8/azure-pipelines.yml#L211-L212

openPMD-api Documentation, Release 0.13.0

Example workflow for a new release:
* https://github.com/openPMD/openPMD-api/pull/774
8.1.5 ReadTheDocs

Activate the new version in Projects - openPMD-api - Versions which triggers its build.

And after the new version was built, and if this version was not a backport to an older release series, set the new
default version in Admin - Advanced Settings.

8.1.6 Doxygen

In order to update the latest Doxygen C++ API docs, located under http://www.openPMD.org/openPMD-api/, do:

assuming a clean source tree
git checkout gh-pages

stash anything that the regular branches have in °.gitignore’
git stash —--include-untracked

optional first argument 1s branch/tag on mainline repo, default: dev
./update.sh

git add

git commit

git push

go back
git checkout -
git stash pop

Note that we publish per-release versions of the Doxygen HTML pages automatically on ReadTheDocs.

98 Chapter 8. Maintenance

https://github.com/openPMD/openPMD-api/pull/774
https://readthedocs.org/projects/openpmd-api/versions
https://readthedocs.org/dashboard/openpmd-api/advanced/
http://www.openPMD.org/openPMD-api/

	Supported openPMD Standard Versions
	Code of Conduct
	Our Pledge
	Our Standards
	Our Responsibilities
	Scope
	Enforcement
	Attribution

	Citation
	openPMD-standard
	openPMD-api

	Installation
	Installation
	Using the Spack Package
	Using the Conda Package
	Using the Brew Package
	Using the PyPI Package
	From Source with CMake

	Changelog
	0.13.0
	0.12.0-alpha
	0.11.1-alpha
	0.11.0-alpha
	0.10.3-alpha
	0.10.2-alpha
	0.10.1-alpha
	0.10.0-alpha
	0.9.0-alpha
	0.8.0-alpha
	0.7.1-alpha
	0.7.0-alpha
	0.6.3-alpha
	0.6.2-alpha
	0.6.1-alpha
	0.6.0-alpha
	0.5.0-alpha
	0.4.0-alpha
	0.3.1-alpha
	0.3.0-alpha
	0.2.0-alpha
	0.1.1-alpha
	0.1.0-alpha

	Upgrade Guide
	0.13.0
	0.12.0-alpha
	0.11.0-alpha
	0.10.0-alpha
	0.9.0-alpha
	0.7.0-alpha

	Usage
	First Write
	Include / Import
	Open
	Iteration
	Attributes
	Data
	Record
	Units
	Register Chunk
	Flush Chunk
	Close

	First Read
	Include / Import
	Open
	Iteration
	Attributes
	Record
	Units
	Register Chunk
	Flush Chunk
	Data
	Close

	Serial Examples
	Reading
	Writing

	Parallel Examples
	Reading
	Writing

	Streaming
	Reading
	Writing

	Benchmarks
	Parallel benchmarks 8a & 8b
	Benchmark Utilities

	All Examples
	C++
	Python
	Unit Tests

	API Details
	C++
	Public Headers
	External Documentation

	Python
	Public Headers

	MPI
	Collective Behavior
	Efficient Parallel I/O Patterns

	Backend-Specific Configuration
	Configuration Structure per Backend

	Utilities
	Command Line Tools
	openpmd-ls

	Benchmark
	Example Usage

	Backends
	Overview
	Selected References

	JSON
	JSON File Format
	Restrictions
	Example

	ADIOS1
	I/O Method
	Backend-Specific Controls
	Best Practice at Large Scale
	Limitations
	Selected References

	ADIOS2
	I/O Method
	Steps
	Backend-Specific Controls
	Best Practice at Large Scale
	Selected References

	HDF5
	I/O Method
	Backend-Specific Controls
	Selected References

	Development
	Contribution Guide
	GitHub
	Style Guide

	Repository Structure
	Branches
	Directory Structure

	Design Overview
	Backend
	I/O-Queue
	Frontend

	How to Write a Backend
	File Formats
	IO Handler
	IO Task Queue

	Build Dependencies
	Required
	Shipped internally
	Optional: I/O backends
	Optional: language bindings
	Quick Install with Spack

	Build Options
	Variants
	Shared or Static
	Debug
	Shipped Dependencies
	Tests, Examples and Command Line Tools

	Sphinx
	Build Locally
	Useful Links

	Maintenance
	Release Channels
	Spack
	Conda-Forge
	Brew
	PyPI
	ReadTheDocs
	Doxygen

