

openPMD C++ & Python API

This library provides an abstract API for openPMD file handling.
It provides both support for writing & reading into various formats and works both serial and parallel (MPI).
Implemented backends include HDF5 and ADIOS1.

Doxygen

The lastest Doxygen docs for the C++ API are published at:

http://www.openpmd.org/openPMD-api

Supported openPMD Standard Versions

openPMD-api is a library using semantic versioning [https://semver.org/], starting with version 1.0.0.

The supported version of the openPMD standard [https://github.com/openPMD/openPMD-standard] are reflected as follows:
standardMAJOR.apiMAJOR.apiMINOR.

	openPMD-api version

	supported openPMD standard versions

	0.1.0-0.3.0 (alpha)

	1.0.0-1.1.0

	1.0.0+

	1.0.1-1.1.0 (not released yet)

	2.0.0+

	2.0.0+ (not released yet)

Installation

Usage

Development

Installation

Choose one of the install methods below to get started:

[image: ../_images/spack.svg]
Using the Spack Package

A package for openPMD-api is available on the Spack package manager.

spack install openpmd-api # optional: +python
spack load --dependencies openpmd-api

[image: ../_images/conda.svg]

Using the conda Package

A package for serial openPMD-api is available on the Conda package manager.

conda install -c conda-forge openpmd-api

[image: ../_images/cmake.svg]

From Source with CMake

You can also install openPMD-api from source with CMake.
This requires that you have all dependencies installed on your system.
The developer section on build options provides further details on variants of the build.

On Linux platforms:

git clone https://github.com/openPMD/openPMD-api.git

mkdir -p openPMD-api-build
cd openPMD-api-build

optional for some tests
.travis/download_samples.sh

for own install prefix append:
-DCMAKE_INSTALL_PREFIX=$HOME/somepath
for options append:
-DopenPMD_USE_...=...
cmake ../openPMD-api

make -j

optional
make test

sudo is only required for system paths
sudo make install

On Windows platforms, replace the last steps with:

cmake -G "NMake Makefiles" ../openPMD-api

nmake
nmake install

Changelog

0.3.0-alpha

Date: 2018-06-18

Python Attributes, Better FS Handling and Runtime Checks

This release exposes openPMD attributes to Python.
A new independent mechanism for verifying internal conditions is now in place.
Filesystem support is now more robust on varying directory separators.

Changes to “0.2.0-alpha”

Features

	CMake: add new openPMD_USE_VERIFY option #229

	introduce VERIFY macro for pre-/post-conditions that replaces ASSERT #229 #260

	serial Singularity container #236

	Python:

	expose attributes #256 #266

	use lists for offsets & extents #266

	C++:

	setAttribute signature changed to const ref #268

Bug Fixes

	handle directory separators platform-dependent #229

	recursive directory creation with existing base #261

	FindADIOS.cmake: reset on multiple calls #263

	SerialIOTest: remove variable shadowing #262

	ADIOS1: memory violation in string attribute writes #269

Other

	enforce platform-specific directory separators on user input #229

	docs:

	link updates to https #259

	minimum MPI version #251

	title updated #235

	remove MPI from serial ADIOS interface #258

	better name for scalar record in examples #257

	check validity of internally used pointers #247

	various CI updates #246 #250 #261

0.2.0-alpha

Date: 2018-06-11

Initial Numpy Bindings

Adds first bindings for record component reading and writing.
Fixes some minor CMake issues.

Changes to “0.1.1-alpha”

Features

	Python: first NumPy bindings for record component chunk store/load #219

	CMake: add new BUILD_EXAMPLES option #238

	CMake: build directories controllable #241

Bug Fixes

	forgot to bump version.hpp/__version__ in last release

	CMake: Overwritable Install Paths #237

0.1.1-alpha

Date: 2018-06-07

ADIOS1 Build Fixes & Less Flushes

We fixed build issues with the ADIOS1 backend.
The number of performed flushes in backends was generally minimized.

Changes to “0.1.0-alpha”

Bug Fixes

	SerialIOTest: loadChunk template missing for ADIOS1 #227

	prepare running serial applications linked against parallel ADIOS1 library #228

Other

	minimize number of flushes in backend #212

0.1.0-alpha

Date: 2018-06-06

This is the first developer release of openPMD-api.

Both HDF5 and ADIOS1 are implemented as backends with serial and parallel I/O support.
The C++11 API is considered alpha state with few changes expected to come.
We also ship an unstable preview of the Python3 API.

First Steps

For brevity, all following examples assume the following includes/imports:

C++11

#include <openPMD/openPMD.hpp>

using namespace openPMD;

Python

import openPMD

Serial API

The serial API provides sequential, one-process read and write access.
Most users will use this for exploration and processing of their data.

Reading

C++

#include <openPMD/openPMD.hpp>

#include <iostream>
#include <memory>

using std::cout;
using namespace openPMD;

int main()
{
 Series series = Series(
 "../samples/git-sample/data%T.h5",
 AccessType::READ_ONLY
);
 cout << "Read a Series with openPMD standard version "
 << series.openPMD() << '\n';

 cout << "The Series contains " << series.iterations.size() << " iterations:";
 for(auto const& i : series.iterations)
 cout << "\n\t" << i.first;
 cout << '\n';

 Iteration i = series.iterations[100];
 cout << "Iteration 100 contains " << i.meshes.size() << " meshes:";
 for(auto const& m : i.meshes)
 cout << "\n\t" << m.first;
 cout << '\n';
 cout << "Iteration 100 contains " << i.particles.size() << " particle species:";
 for(auto const& ps : i.particles)
 cout << "\n\t" << ps.first;
 cout << '\n';

 MeshRecordComponent E_x = i.meshes["E"]["x"];
 Extent extent = E_x.getExtent();
 cout << "Field E/x has shape (";
 for(auto const& dim : extent)
 cout << dim << ',';
 cout << ") and has datatype " << E_x.getDatatype() << '\n';

 Offset chunk_offset = {1, 1, 1};
 Extent chunk_extent = {2, 2, 1};
 auto chunk_data = E_x.loadChunk<double>(chunk_offset, chunk_extent);
 cout << "Queued the loading of a single chunk from disk, "
 "ready to execute\n";
 series.flush();
 cout << "Chunk has been read from disk\n"
 << "Read chunk contains:\n";
 for(size_t row = 0; row < chunk_extent[0]; ++row)
 {
 for(size_t col = 0; col < chunk_extent[1]; ++col)
 cout << "\t"
 << '(' << row + chunk_offset[0] << '|' << col + chunk_offset[1] << '|' << 1 << ")\t"
 << chunk_data.get()[row*chunk_extent[1]+col];
 cout << '\n';
 }

 return 0;
}

An extended example can be found in examples/6_dump_filebased_series.cpp.

Python

import openPMD

if __name__ == "__main__":
 series = openPMD.Series("../samples/git-sample/data%T.h5",
 openPMD.Access_Type.read_only)
 print("Read a Series with openPMD standard version %s" %
 series.openPMD)

 print("The Series contains {0} iterations:".format(len(series.iterations)))
 for i in series.iterations:
 print("\t {0}".format(i))
 print("")

 i = series.iterations[100]
 print("Iteration 100 contains {0} meshes:".format(len(i.meshes)))
 for m in i.meshes:
 print("\t {0}".format(m))
 print("")
 print("Iteration 100 contains {0} particle species:".format(
 len(i.particles)))
 for ps in i.particles:
 print("\t {0}".format(ps))
 print("")

 E_x = i.meshes["E"]["x"]
 shape = E_x.shape

 print("Field E.x has shape {0} and datatype {1}".format(
 shape, E_x.dtype))

 offset = [1, 1, 1]
 extent = [2, 2, 1]
 # TODO buffer protocol / numpy bindings
 # chunk_data = E_x[1:3, 1:3, 1:2]
 chunk_data = E_x.load_chunk(offset, extent)
 # print("Queued the loading of a single chunk from disk, "
 # "ready to execute")
 series.flush()
 print("Chunk has been read from disk\n"
 "Read chunk contains:")
 print(chunk_data)
 # for row in range(2):
 # for col in range(2):
 # print("\t({0}|{1}|{2})\t{3}".format(
 # row + 1, col + 1, 1, chunk_data[row*chunk_extent[1]+col])
 #)
 # print("")

Writing

C++

#include <openPMD/openPMD.hpp>

#include <iostream>
#include <memory>
#include <numeric>

using std::cout;
using namespace openPMD;

int main(int argc, char *argv[])
{
 // user input: size of matrix to write, default 3x3
 size_t size = (argc == 2 ? atoi(argv[1]) : 3);

 // matrix dataset to write with values 0...size*size-1
 std::vector<double> global_data(size*size);
 std::iota(global_data.begin(), global_data.end(), 0.);

 cout << "Set up a 2D square array (" << size << 'x' << size
 << ") that will be written\n";

 // open file for writing
 Series series = Series(
 "../samples/3_write_serial.h5",
 AccessType::CREATE
);
 cout << "Created an empty " << series.iterationEncoding() << " Series\n";

 MeshRecordComponent rho =
 series
 .iterations[1]
 .meshes["rho"][MeshRecordComponent::SCALAR];
 cout << "Created a scalar mesh Record with all required openPMD attributes\n";

 Datatype datatype = determineDatatype(shareRaw(global_data));
 Extent extent = {size, size};
 Dataset dataset = Dataset(datatype, extent);
 cout << "Created a Dataset of size " << dataset.extent[0] << 'x' << dataset.extent[1]
 << " and Datatype " << dataset.dtype << '\n';

 rho.resetDataset(dataset);
 cout << "Set the dataset properties for the scalar field rho in iteration 1\n";

 series.flush();
 cout << "File structure and required attributes have been written\n";

 Offset offset = {0, 0};
 rho.storeChunk(offset, extent, shareRaw(global_data));
 cout << "Stored the whole Dataset contents as a single chunk, "
 "ready to write content\n";

 series.flush();
 cout << "Dataset content has been fully written\n";

 return 0;
}

An extended example can be found in examples/7_extended_write_serial.cpp.

Python

import openPMD
import numpy as np

if __name__ == "__main__":
 # user input: size of matrix to write, default 3x3
 size = 3

 # matrix dataset to write with values 0...size*size-1
 global_data = np.arange(size*size, dtype=np.double)

 print("Set up a 2D square array ({0}x{1}) that will be written".format(
 size, size))

 # open file for writing
 series = openPMD.Series(
 "../samples/3_write_serial_py.h5",
 openPMD.Access_Type.create
)

 print("Created an empty {0} Series".format(series.iteration_encoding))

 print(len(series.iterations))
 rho = series.iterations[1]. \
 meshes["rho"][openPMD.Mesh_Record_Component.SCALAR]

 datatype = openPMD.Datatype.DOUBLE
 # datatype = openPMD.determineDatatype(global_data)
 extent = [size, size]
 dataset = openPMD.Dataset(datatype, extent)

 print("Created a Dataset of size {0}x{1} and Datatype {2}".format(
 dataset.extent[0], dataset.extent[1], dataset.dtype))

 rho.reset_dataset(dataset)
 print("Set the dataset properties for the scalar field rho in iteration 1")

 # writing fails on already open file error
 series.flush()
 print("File structure has been written")

 offset = [0, 0]
 # TODO implement slicing protocol
 # E[offset[0]:extent[0], offset[1]:extent[1]] = global_data
 rho.store_chunk(offset, extent, global_data)
 print("Stored the whole Dataset contents as a single chunk, " +
 "ready to write content")

 series.flush()
 print("Dataset content has been fully written")

Parallel API

The following examples show parallel reading and writing of domain-decomposed data with MPI.

Reading

#include <openPMD/openPMD.hpp>

#include <mpi.h>

#include <iostream>
#include <memory>

using std::cout;
using namespace openPMD;

int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);

 int mpi_size;
 int mpi_rank;

 MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
 MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);

 /* note: this scope is intentional to destruct the openPMD::Series object
 * prior to MPI_Finalize();
 */
 {
 Series series = Series(
 "../samples/git-sample/data%T.h5",
 AccessType::READ_ONLY,
 MPI_COMM_WORLD
);
 if(0 == mpi_rank)
 cout << "Read a series in parallel with " << mpi_size << " MPI ranks\n";

 MeshRecordComponent E_x = series.iterations[100].meshes["E"]["x"];

 Offset chunk_offset = {
 static_cast< long unsigned int >(mpi_rank) + 1,
 1,
 1
 };
 Extent chunk_extent = {2, 2, 1};

 auto chunk_data = E_x.loadChunk<double>(chunk_offset, chunk_extent);

 if(0 == mpi_rank)
 cout << "Queued the loading of a single chunk per MPI rank from disk, "
 "ready to execute\n";
 series.flush();

 if(0 == mpi_rank)
 cout << "Chunks have been read from disk\n";

 for(int i = 0; i < mpi_size; ++i)
 {
 if(i == mpi_rank)
 {
 cout << "Rank " << mpi_rank << " - Read chunk contains:\n";
 for(size_t row = 0; row < chunk_extent[0]; ++row)
 {
 for(size_t col = 0; col < chunk_extent[1]; ++col)
 cout << "\t"
 << '(' << row + chunk_offset[0] << '|' << col + chunk_offset[1] << '|' << 1 << ")\t"
 << chunk_data.get()[row*chunk_extent[1]+col];
 cout << std::endl;
 }
 }

 // this barrier is not necessary but structures the example output
 MPI_Barrier(MPI_COMM_WORLD);
 }
 }

 // openPMD::Series MUST be destructed at this point
 MPI_Finalize();

 return 0;
}

Writing

#include <openPMD/openPMD.hpp>

#include <mpi.h>

#include <iostream>
#include <memory>

using std::cout;
using namespace openPMD;

int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);

 int mpi_size;
 int mpi_rank;

 MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
 MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);

 /* note: this scope is intentional to destruct the openPMD::Series object
 * prior to MPI_Finalize();
 */
 {
 // allocate a data set to write
 std::shared_ptr< double > global_data(new double[mpi_size], [](double *p) { delete[] p; });
 for(int i = 0; i < mpi_size; ++i)
 global_data.get()[i] = i;
 if(0 == mpi_rank)
 cout << "Set up a 1D array with one element per MPI rank (" << mpi_size
 << ") that will be written to disk\n";

 std::shared_ptr< double > local_data{new double};
 *local_data = global_data.get()[mpi_rank];
 if(0 == mpi_rank)
 cout << "Set up a 1D array with one element, representing the view of the MPI rank\n";

 // open file for writing
 Series series = Series(
 "../samples/5_parallel_write.h5",
 AccessType::CREATE,
 MPI_COMM_WORLD
);
 if(0 == mpi_rank)
 cout << "Created an empty series in parallel with "
 << mpi_size << " MPI ranks\n";

 MeshRecordComponent id =
 series
 .iterations[1]
 .meshes["id"][MeshRecordComponent::SCALAR];

 Datatype datatype = determineDatatype(local_data);
 Extent dataset_extent = {static_cast< long unsigned int >(mpi_size)};
 Dataset dataset = Dataset(datatype, dataset_extent);

 if(0 == mpi_rank)
 cout << "Created a Dataset of size " << dataset.extent[0]
 << " and Datatype " << dataset.dtype << '\n';

 id.resetDataset(dataset);
 if(0 == mpi_rank)
 cout << "Set the global on-disk Dataset properties for the scalar field id in iteration 1\n";

 series.flush();
 if(0 == mpi_rank)
 cout << "File structure has been written to disk\n";

 Offset chunk_offset = {static_cast< long unsigned int >(mpi_rank)};
 Extent chunk_extent = {1};
 id.storeChunk(chunk_offset, chunk_extent, local_data);
 if(0 == mpi_rank)
 cout << "Stored a single chunk per MPI rank containing its contribution, "
 "ready to write content to disk\n";

 series.flush();
 if(0 == mpi_rank)
 cout << "Dataset content has been fully written to disk\n";
 }

 // openPMD::Series MUST be destructed at this point
 MPI_Finalize();

 return 0;
}

Contribution Guide

GitHub

The best starting point is the GitHub issue tracker [https://github.com/openPMD/openPMD-api/issues].

For existing tasks, the labels good first issue [https://github.com/openPMD/openPMD-api/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22] and help wanted [https://github.com/openPMD/openPMD-api/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22] are great for contributions.
In case you want to start working on one of those, just comment in it first so no work is duplicated.

New contributions in form of pull requests [https://help.github.com/articles/about-pull-requests/] always need to go in the dev (development) branch.
The master branch contains the last stable release and receives updates only when a new version is drafted.

Maintainers organize prioritites and progress in the projects tab [https://github.com/openPMD/openPMD-api/projects].

Style Guide

For coding style, please try to follow the guides in ComputationalRadiationPhysics/contributing [https://github.com/ComputationalRadiationPhysics/contributing] for new code.

Repository Structure

Branches

	master: the latest stable release, always tagged with a version

	dev: the development branch where all features start from and are merged to

	release-X.Y.Z: release candiate for version X.Y.Z with an upcoming release, receives updates for bug fixes and documentation such as change logs but usually no new features

Directory Structure

	include/

	C++ header files

	set -I here

	prefixed with project name

	src/

	C++ source files

	lib/

	python/

	modules, e.g. additional python interfaces and helpers

	set PYTHONPATH here

	examples/

	read and write examples

	samples/

	example files; need to be added manually with:
.travis/download_samples.sh

	share/openPMD/

	cmake/

	cmake scripts

	thirdParty/

	included third party software

	test/

	unit tests which are run with ctest (make test)

	.travis/

	setup scripts for our continuous integration systems

	docs/

	documentation files

How to Write a Backend

Adding support for additional types of file storage or data transportation is possible by creating a backend.
Backend design has been kept independent of the openPMD-specific logic that maintains all constraints within a file.
This should allow easy introduction of new file formats with only little knowledge about the rest of the system.

File Formats

To get started, you should create a new file format in include/openPMD/IO/Format.hpp representing the new backend.
Note that this enumeration value will never be seen by users of openPMD-api, but should be kept short and concise to
improve readability.

enum class Format
{
 JSON
};

In order to use the file format through the API, you need to provide unique and characteristic filename extensions that
are associated with it. This happens in src/Series.cpp:

Format
determineFormat(std::string const& filename)
{
 if(auxiliary::ends_with(filename, ".json"))
 return Format::JSON;
}

std::string
cleanFilename(std::string const& filename, Format f)
{
 switch(f)
 {
 case Format::JSON:
 return auxiliary::replace_last(filename, ".json", "");
 }
}

std::function< bool(std::string const&) >
matcher(std::string const& name, Format f)
{
 switch(f)
 {
 case Format::JSON:
 {
 std::regex pattern(auxiliary::replace_last(name + ".json$", "%T", "[[:digit:]]+"));
 return [pattern](std::string const& filename) -> bool { return std::regex_search(filename, pattern); };
 }
 }
}

Unless your file format imposes additional restrictions to the openPMD constraints, this is all you have to do in the
frontend section of the API.

IO Handler

Now that the user can specify that the new backend is to be used, a concrete mechanism for handling IO interactions is
required. We call this an IOHandler. It is not concerned with any logic or constraints enforced by openPMD, but
merely offers a small set of elementary IO operations.

On the very basic level, you will need to derive a class from AbstractIOHandler:

/* file: include/openPMD/IO/JSON/JSONIOHandler.hpp */
#include "openPMD/IO/AbstractIOHandler.hpp"

namespace openPMD
{
class JSONIOHandler : public AbstractIOHandler
{
public:
 JSONIOHandler(std::string const& path, AccessType);
 virtual ~JSONIOHandler();

 std::future< void > flush() override;
}
} // openPMD

/* file: src/IO/JSON/JSONIOHandler.cpp */
#include "openPMD/IO/JSON/JSONIOHandler.hpp"

namespace openPMD
{
JSONIOHandler::JSONIOHandler(std::string const& path, AccessType at)
 : AbstractIOHandler(path, at)
{ }

JSONIOHandler::~JSONIOHandler()
{ }

std::future< void >
JSONIOHandler::flush()
{ return std::future< void >(); }
} // openPMD

Familiarizing your backend with the rest of the API happens in just one place in src/IO/AbstractIOHandler.cpp:

#if openPMD_HAVE_MPI
std::shared_ptr< AbstractIOHandler >
AbstractIOHandler::createIOHandler(std::string const& path,
 AccessType at,
 Format f,
 MPI_Comm comm)
{
 switch(f)
 {
 case Format::JSON:
 std::cerr << "No MPI-aware JSON backend available. "
 "Falling back to the serial backend! "
 "Possible failure and degraded performance!" << std::endl;
 return std::make_shared< JSONIOHandler >(path, at);
 }
}
#endif

std::shared_ptr< AbstractIOHandler >
AbstractIOHandler::createIOHandler(std::string const& path,
 AccessType at,
 Format f)
{
 switch(f)
 {
 case Format::JSON:
 return std::make_shared< JSONIOHandler >(path, at);
 }
}

In this state, the backend will do no IO operations and just act as a dummy that ignores all queries.

IO Task Queue

Operations between the logical representation in this API and physical storage are funneled through a queue m_work
that is contained in the newly created IOHandler. Contained in this queue are IOTask s that have to be processed in
FIFO order (unless you can prove sequential execution guarantees for out-of-order execution) when
AbstractIOHandler::flush() is called. A recommended skeleton is provided in AbstractIOHandlerImpl. Note
that emptying the queue this way is not required and might not fit your IO scheme.

	Using the provided skeleton involves
	
	deriving an IOHandlerImpl for your IOHandler and

	delegating all flush calls to the IOHandlerImpl:

/* file: include/openPMD/IO/JSON/JSONIOHandlerImpl.hpp */
#include "openPMD/IO/AbstractIOHandlerImpl.hpp"

namespace openPMD
{
class JSONIOHandlerImpl : public AbstractIOHandlerImpl
{
public:
 JSONIOHandlerImpl(AbstractIOHandler*);
 virtual ~JSONIOHandlerImpl();

 virtual void createFile(Writable*, Parameter< Operation::CREATE_FILE > const&) override;
 virtual void createPath(Writable*, Parameter< Operation::CREATE_PATH > const&) override;
 virtual void createDataset(Writable*, Parameter< Operation::CREATE_DATASET > const&) override;
 virtual void extendDataset(Writable*, Parameter< Operation::EXTEND_DATASET > const&) override;
 virtual void openFile(Writable*, Parameter< Operation::OPEN_FILE > const&) override;
 virtual void openPath(Writable*, Parameter< Operation::OPEN_PATH > const&) override;
 virtual void openDataset(Writable*, Parameter< Operation::OPEN_DATASET > &) override;
 virtual void deleteFile(Writable*, Parameter< Operation::DELETE_FILE > const&) override;
 virtual void deletePath(Writable*, Parameter< Operation::DELETE_PATH > const&) override;
 virtual void deleteDataset(Writable*, Parameter< Operation::DELETE_DATASET > const&) override;
 virtual void deleteAttribute(Writable*, Parameter< Operation::DELETE_ATT > const&) override;
 virtual void writeDataset(Writable*, Parameter< Operation::WRITE_DATASET > const&) override;
 virtual void writeAttribute(Writable*, Parameter< Operation::WRITE_ATT > const&) override;
 virtual void readDataset(Writable*, Parameter< Operation::READ_DATASET > &) override;
 virtual void readAttribute(Writable*, Parameter< Operation::READ_ATT > &) override;
 virtual void listPaths(Writable*, Parameter< Operation::LIST_PATHS > &) override;
 virtual void listDatasets(Writable*, Parameter< Operation::LIST_DATASETS > &) override;
 virtual void listAttributes(Writable*, Parameter< Operation::LIST_ATTS > &) override;
}
} // openPMD

/* file: include/openPMD/IO/JSON/JSONIOHandler.hpp */
#include "openPMD/IO/AbstractIOHandler.hpp"
#include "openPMD/IO/JSON/JSONIOHandlerImpl.hpp"

namespace openPMD
{
class JSONIOHandler : public AbstractIOHandler
{
public:
 /* ... */
private:
 JSONIOHandlerImpl m_impl;
}
} // openPMD

/* file: src/IO/JSON/JSONIOHandler.cpp */
#include "openPMD/IO/JSON/JSONIOHandler.hpp"

namespace openPMD
{
/*...*/
std::future< void >
JSONIOHandler::flush()
{
 return m_impl->flush();
}
} // openPMD

Each IOTask contains a pointer to a Writable that corresponds to one object in the openPMD hierarchy. This object
may be a group or a dataset. When processing certain types of IOTasks in the queue, you will have to assign unique
FilePositions to these objects to identify the logical object in your physical storage. For this, you need to derive
a concrete FilePosition for your backend from AbstractFilePosition. There is no requirement on how to identify your
objects, but ids from your IO library and positional strings are good candidates.

/* file: include/openPMD/IO/JSON/JSONFilePosition.hpp */
#include "openPMD/IO/AbstractFilePosition.hpp"

namespace openPMD
{
struct JSONFilePosition : public AbstractFilePosition
{
 JSONFilePosition(uint64_t id)
 : id{id}
 { }

 uint64_t id;
};
} // openPMD

From this point, all that is left to do is implement the elementary IO operations provided in the IOHandlerImpl. The
Parameter structs contain both input parameters (from storage to API) and output parameters (from API to storage).
The easy way to distinguish between the two parameter sets is their C++ type: Input parameters are
std::shared_ptr s that allow you to pass the requested data to their destination. Output parameters are all objects
that are not std::shared_ptr s. The contract of each function call is outlined in
include/openPMD/IO/AbstractIOHandlerImpl.

/* file: src/IO/JSON/JSONIOHandlerImpl.cpp */
#include "openPMD/IO/JSONIOHandlerImpl.hpp"

namespace openPMD
{
void
JSONIOHandlerImpl::createFile(Writable* writable,
 Parameter< Operation::CREATE_FILE > const& parameters)
{
 if(!writable->written)
 {
 path dir(m_handler->directory);
 if(!exists(dir))
 create_directories(dir);

 std::string name = m_handler->directory + parameters.name;
 if(!auxiliary::ends_with(name, ".json"))
 name += ".json";

 uint64_t id = /*...*/
 VERIFY(id >= 0, "Internal error: Failed to create JSON file");

 writable->written = true;
 writable->abstractFilePosition = std::make_shared< JSONFilePosition >(id);
 }
}
/*...*/
} // openPMD

Note that you might have to keep track of open file handles if they have to be closed explicitly during destruction of
the IOHandlerImpl (prominent in C-style frameworks).

Build Dependencies

Section author: Axel Huebl

openPMD-api depends on a series of third-party projects.
These are currently:

Required

	CMake 3.10.0+

	C++11 capable compiler, e.g. g++ 4.8+, clang 3.9+, VS 2015+

Shipped internally

The following libraries are shipped internally for convenience:

	MPark.Variant [https://github.com/mpark/variant] 1.3.0+

	Catch2 [https://github.com/catchorg/Catch2] 2.2.1+

Optional: I/O backends

	HDF5 [https://support.hdfgroup.org/HDF5] 1.8.13+

	ADIOS1 [https://www.olcf.ornl.gov/center-projects/adios] 1.13.1+

	ADIOS2 [https://github.com/ornladios/ADIOS2] 2.1+ (not yet implemented)

while those can be build either with or without:

	MPI 2.1+, e.g. OpenMPI 1.6.5+ or MPICH2

Optional: language bindings

	Python:

	Python 3.X+

	pybind11 2.2.1+

	numpy

Build Options

Section author: Axel Huebl

Variants

The following options can be added to the cmake call to control features.
CMake controls options with prefixed -D, e.g. -DopenPMD_USE_MPI=OFF:

	CMake Option

	Values

	Description

	openPMD_USE_MPI

	AUTO/ON/OFF

	Enable MPI support

	openPMD_USE_HDF5

	AUTO/ON/OFF

	Enable support for HDF5

	openPMD_USE_ADIOS1

	AUTO/ON/OFF

	Enable support for ADIOS1

	openPMD_USE_ADIOS2

	AUTO/ON/OFF

	Enable support for ADIOS2 1

	openPMD_USE_PYTHON

	AUTO/ON/OFF

	Enable Python bindings

	openPMD_USE_INVASIVE_TESTS

	AUTO/ON/OFF

	Enable unit tests that modify source code 2

	openPMD_USE_VERIFY

	ON/OFF

	Enable internal VERIFY (assert) macro independent of build type 3

	PYTHON_EXECUTABLE

	(first found)

	Path to Python executable

1 not yet implemented

2 e.g. C++ keywords, currently disabled only for MSVC

3 this includes most pre-/post-condition checks, disabling without specific cause is highly discouraged

Shared or Static

By default, we will build as a static library and install also its headers.
You can only build a static (libopenPMD.a or openPMD.lib) or a shared library (libopenPMD.so or openPMD.dll) at a time.

The following options can be tried to switch between static and shared builds and control if dependencies are linked dynamically or statically:

	CMake Option

	Values

	Description

	BUILD_SHARED_LIBS

	ON/OFF

	Build the C++ API as shared library

	HDF5_USE_STATIC_LIBRARIES

	ON/OFF

	Require static HDF5 library

	ADIOS_USE_STATIC_LIBS

	ON/OFF

	Require static ADIOS1 library

Note that python modules (openPMD.cpython.[...].so or openPMD.pyd) are always dynamic libraries.
Therefore, if you want to build the python module and prefer static dependencies, make sure to provide all of dependencies build with position independent code (-fPIC).
The same requirement is true if you want to build a shared C++ API library with static dependencies.

Debug

By default, the Release version is built.
In order to build with debug symbols, pass -DCMAKE_BUILD_TYPE=Debug to your cmake command.

Shipped Dependencies

Additionally, the following libraries are shipped internally for convenience.
These might get installed in your CMAKE_INSTALL_PREFIX if the option is ON.

The following options allow to switch to external installs of dependencies:

	CMake Option

	Values

	Installs

	Library

	Version

	openPMD_USE_INTERNAL_VARIANT

	ON/OFF

	Yes

	MPark.Variant

	1.3.0+

	openPMD_USE_INTERNAL_CATCH

	ON/OFF

	No

	Catch2

	2.2.1+

Tests

By default, tests and examples are built.
In order to skip building those, pass -DBUILD_TESTING=OFF or -DBUILD_EXAMPLES=OFF to your cmake command.

Sphinx

Section author: Axel Huebl

In the following section we explain how to contribute to this documentation.

If you are reading the HTML version on http://openPMD-api.readthedocs.io and want to improve or correct existing pages, check the “Edit on GitHub” link on the right upper corner of each document.

Alternatively, go to docs/source in our source code and follow the directory structure of reStructuredText [http://www.sphinx-doc.org/en/stable/rest.html] (.rst) files there.
For intrusive changes, like structural changes to chapters, please open an issue to discuss them beforehand.

Build Locally

This document is build based on free open-source software, namely Sphinx [https://github.com/sphinx-doc/sphinx], Doxygen [http://doxygen.org] (C++ APIs as XML) and Breathe [https://github.com/michaeljones/breathe] (to include doxygen XML in Sphinx).
A web-version is hosted on ReadTheDocs [https://readthedocs.org/].

The following requirements need to be installed (once) to build our documentation successfully:

cd docs/

doxygen is not shipped via pip, install it externally,
from the homepage, your package manager, conda, etc.
example:
sudo apt-get install doxygen

python tools & style theme
pip install -r requirements.txt # --user

With all documentation-related software successfully installed, just run the following commands to build your docs locally.
Please check your documentation build is successful and renders as you expected before opening a pull request!

skip this if you are still in docs/
cd docs/

parse the C++ API documentation,
enjoy the doxygen warnings!
doxygen
render the `.rst` files and replace their macros within
enjoy the breathe errors on things it does not understand from doxygen :)
make html

open it, e.g. with firefox :)
firefox build/html/index.html

now again for the pdf :)
make latexpdf

open it, e.g. with okular
build/latex/openPMD-api.pdf

Useful Links

	A primer on writing restFUL files for sphinx [http://www.sphinx-doc.org/en/stable/rest.html]

	Why You Shouldn’t Use “Markdown” for Documentation [http://ericholscher.com/blog/2016/mar/15/dont-use-markdown-for-technical-docs/]

	Markdown Limitations in Sphinx [https://docs.readthedocs.io/en/latest/getting_started.html#in-markdown]

Doxygen

Section author: Axel Huebl

An online version of our Doxygen build can be found at

http://www.openPMD.org/openPMD-api/

We regularly update it via

git checkout gh-pages

optional argument: branch or tag name
./update.sh

git commit -a
git push

This section explains what is done when this script is run to build it manually.

Requirements

First, install Doxygen [http://doxygen.org] and its dependencies for graph generation.

install requirements (Debian/Ubuntu)
sudo apt-get install doxygen graphviz

enable HTML output in our Doxyfile
sed -i 's/GENERATE_HTML.*=.*NO/GENERATE_HTML = YES/' docs/Doxyfile

Build

Now run the following commands to build the Doxygen HTML documentation locally.

cd docs/

build the doxygen HTML documentation
doxygen

open the generated HTML pages, e.g. with firefox
firefox html/index.html

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/openPMD.png
open /2

nav.xhtml

 Table of Contents

 		
 openPMD C++ & Python API

